Citation: | Li Shuang, Zhang Xiaowei, Tan Xu, Xu Lingfei, Lü Shenghua, Wen Jian. Deep learning-based inverse identification of multi-target parameters for tree rooting ground-penetrating radar[J]. Journal of Beijing Forestry University, 2024, 46(4): 103-114. DOI: 10.12171/j.1000-1522.20230259 |
This paper takes multi-target detection and multi-parameter estimation of root radar images using deep learning methods.
In this study, a network model with YOLOv5s and CNN-LSTM as the main framework was constructed to achieve multi-target detection and multi-parameter estimation of root radar scanning images. Firstly, the root system radar profile data required for the experiments were obtained through simulation and pre-embedding experiments, and at the same time, in order to increase the diversity of the data, a batch of simulation data with the characteristics of real radar images were obtained using CycleGAN style migration network; then, the root system response region was identified and extracted using the YOLOv5s target detection network; then, the frequency domain transform was introduced to obtain the frequency domain features and fuse the time domain features and frequency domain features of the root system radar image; finally, a convolutional neural network (CNN), a convolutional attention mechanism, and a long short-term memory network (LSTM) were used to emphasize and extract the information features related to the root system parameters, and a multi-task learning approach was used to achieve the prediction of the root system radius, depth, relative permittivity, and horizontal angle.
(1) In the simulation experiments, the maximum error in the estimation of root radius was 4.3 mm with R2 of 0.980 and a root mean square error of 1.32. The maximum error in the estimation of depth was 35.1 mm with R2 of 0.962 and a root mean square error of 17.68, and the maximum error in the estimation of relative permittivity was 3.1 with R2 of 0.960 and a root mean square error of 1.10, and the maximum error in the estimation of the horizontal angle was 10.2°, with R2 of 0.821 and the root mean square error was 4.96. (2) The average relative error of root radius estimation on measured data was 9.112%, the average relative error of depth estimation was 5.772%, and the average relative error of horizontal angle estimation was 11.25%.
The experimental data show that the method proposed in this paper can facilitate root detection and root parameter estimation.
[1] |
Liang H, Xing L, Lin J. Application and algorithm of ground-penetrating radar for plant root detection: a review[J/OL]. Sensors, 2020, 20(10): 2836[2022−5−16]. https://doi.org/10.3390/s20102836.
|
[2] |
王哲旭. 基于探地雷达的树木根系检测算法研究[D]. 无锡: 江南大学, 2023.
Wang Z X. Reasearch on tree root detection algorithm using ground penetrating radar[D]. Wuxi: Jiangnan University, 2023.
|
[3] |
Liu L B, Zhong Q L, Ni, J. Allometric function-based root biomass estimate of woody plants in a karst evergreen and deciduous broadleaf and mixed forest in central Guizhou Province, southwestern China[J]. Acta Ecologica Sinica, 2018, 38(24): 8726−8732.
|
[4] |
Riedell W E, Osborne S L. Monolith root sampling elucidates western corn rootworm larval feeding injury in maize[J]. Crop Science, 2017, 57(6): 3170−3178. doi: 10.2135/cropsci2017.04.0218
|
[5] |
Chirol C, Carr S J, Spencer K L, et al. Pore, live root and necromass quantification in complex heterogeneous wetland soils using X-ray computed Tomography[J/OL]. Geoderma, 2021, 387: 114898[2021−10−31]. https://doi.org/10.3390/electronics9111804.
|
[6] |
Sharma N, Khajuria Y, Sharma J, et al. Microscopic, elemental and molecular spectroscopic investigations of root-knot nematode infested okra plant Roots[J]. Vacuum, 2018, 158: 126−135. doi: 10.1016/j.vacuum.2018.09.039
|
[7] |
Lei W, Hou F, Xi J, et al. Automatic hyperbola detection and fitting in GPR B-scan Image[J/OL]. Automation in Construction, 2019, 106: 102839[2021−06−25]. https://doi.org/10.1016/j.autcon.2019.102839.
|
[8] |
Luo W, Lee Y H, Ow L F, et al. Accurate tree roots positioning and sizing over undulated ground surfaces by common offset GPR measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1−11.
|
[9] |
Barton C V M, Montagu K D. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal Conditions[J]. Tree Physiology, 2004, 24(12): 1323−1331. doi: 10.1093/treephys/24.12.1323
|
[10] |
Cui X, Chen J, Shen J, et al. Modeling tree root diameter and biomass by ground-penetrating radar[J]. Science China Earth Sciences, 2011, 54(5): 711−719. doi: 10.1007/s11430-010-4103-z
|
[11] |
Tanikawa T, Ikeno H, Yamase K, et al. Can Ground-penetrating radar detect adjacent roots and rock fragments in forest soil?[J]. Plant and Soil, 2021, 468(1−2): 239−257. doi: 10.1007/s11104-021-05116-3
|
[12] |
Zhang X H, Derival M, Albrecht U, et al. Evaluation of a ground penetrating radar to map the root architecture of HLB-infected citrus trees[J/OL]. Agronomy, 2019, 9(7): 354[2021−07−03]. https://doi.org/10.3390/agronomy9070354.
|
[13] |
Lei W, Luo J, Hou F, et al. Underground cylindrical objects detection and diameter identification in GPR B-scans via the CNN-LSTM framework[J/OL]. Electronics, 2020, 9(11): 1804[2021−10−31]. https://doi.org/10.3390/electronics9111804.
|
[14] |
王泽鹏, 张潇巍, 薛芳秀, 等. 探地雷达树木根系定位与直径估算[J]. 农业工程学报, 2021, 37(8): 160−168.
Wang Z P, Zhang X W, Xue F X, et al. Estimating the location and diameter of tree roots using ground penetrating radar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(8): 160−168.
|
[15] |
李光辉, 王哲旭, 徐汇, 等. 基于探地雷达和深度学习的果树根径预测方法[J]. 农业机械学报, 2022, 53(11): 306−313, 348.
Li G H, Wang Z X, Xu H, et al. Root diameter prediction method of fruit trees based on ground penetrating radar and deep learning[J]. Transactions of the Chinese Society of Agricultural Machinery, 2022, 53(11): 306−313, 348.
|
[16] |
肖维颖, 王健, 李文顺. 松树株数识别的 YOLOv5 轻量化算法研究[J]. 森林工程, 2023, 39(4): 126−133.
Xiao W Y, Wang J, Li W S. Research on YOLOv5 lightweight algorithm for pine tree strain identification[J]. Forest Engineering, 2023, 39(4): 126−133.
|
[17] |
王辉, 欧阳缮, 刘庆华, 等. 基于深度学习的探地雷达二维剖面图像结构特征检测方法[J]. 电子与信息学报, 2022, 44(4): 1284−1294.
Wang H, Ouyang S, Liu Q H, et al. Structure feature detection method for ground penetrating radar two-dimensional profile image based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1284−1294.
|
[18] |
魏锦山, 陈争光, 焦峰. 基于不同卷积尺度融合与近红外光谱的土地分类模型研究[J]. 光谱学与光谱分析, 2023, 43(2): 460−467.
Wei J S, Chen Z G, Jiao F. Research on land classification model based on fusion of different convolution scales and near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(2): 460−467.
|
[19] |
Liu T, Bao J, Wang J, et al. A hybrid CNN–LSTM algorithm for online defect recognition of CO2 welding[J/OL]. Sensors, 2018, 18(2): 4369[2021−12−10]. https://doi.org/10.3390/s18124369.
|
[20] |
Jeong M, Park M, Nam J, et al. Light-weight student LSTM for real-time wildfire smoke detection[J/OL]. Sensors, 2020, 20(19): 5508[2020−09−25]. https://doi.org/10.3390/s20195508.
|
[21] |
Agethen S, Hsu W H. Deep multi-kernel convolutional LSTM networks and an attention-based mechanism for videos[J]. IEEE Transactions on Multimedia, 2020, 22(3): 819−829. doi: 10.1109/TMM.2019.2932564
|
[22] |
Lantini L, Massimi F, Tosti F, et al. A deep learning approach for tree root detection using GPR spectrogram imagery[C]// 45th International Conference on Telecommunications and Signal Processing (TSP). Prague: IEEE, 2022: 391−394.
|
[23] |
盛同杰, 赵惊涛, 彭苏萍. 地震绕射波弱信号U-net网络提取方法[J]. 地球物理学报, 2023, 66(3): 1192−1204.
Sheng T J, Zhao J T, Peng S P. Seismic diffraction extraction method using U-net for weak signals[J]. Chinese Journal of Geophysics, 2023, 66(3): 1192−1204.
|
[24] |
张省, 李山山, 魏国芳, 等. 面向精细化多尺度特征的遥感图像目标检测[J]. 遥感学报, 2022, 26(12): 2616−2628. doi: 10.11834/jrs.20221801
Zhang S, Li S S, Wei G F, et al. Refined multi-scale feature-oriented object detection of remote sensing images[J]. National Remote Sensing Bulletin, 2022, 26(12): 2616−2628. doi: 10.11834/jrs.20221801
|
[25] |
Paknezhad M, Rengarajan H, Yuan C, et al. Improving transparency and representational generalizability through parallel continual Learning[J]. Neural Networks, 2023, 161: 449−465. doi: 10.1016/j.neunet.2023.02.007
|
[26] |
Gu J, Ye J C. AdaIN-based tunable CycleGAN for efficient unsupervised low-dose CT denoising[J]. IEEE Transactions on Computational Imaging, 2021, 7: 73−85. doi: 10.1109/TCI.2021.3050266
|
[27] |
Dou H, Chen C, Hu X, et al. Asymmetric CycleGAN for image-to-image translations with uneven complexities[J]. Neurocomputing, 2020, 415: 114−122. doi: 10.1016/j.neucom.2020.07.044
|
[28] |
Qin Y, Wang Z, Xi D. Tree CycleGAN with maximum diversity loss for image augmentation and its application into gear pitting Detection[J/OL]. Applied Soft Computing, 2022, 114: 108130[2022−11−27]. https://doi.org/10.1016/j.asoc.2021.108130.
|
[29] |
Pan J, Sun M, Wang Y, et al. A time-delay estimation approach for coherent GPR signals by taking into account the noise pattern and radar Pulse[J/OL]. Signal Processing, 2020, 176: 107654[2021−06−05]. https://doi.org/10.1016/j.sigpro.2020.107654.
|
[30] |
Wang X, Liu S. Noise suppressing and direct wave arrivals removal in GPR data based on Shearlet Transform[J]. Signal Processing, 2017, 132: 227−242. doi: 10.1016/j.sigpro.2016.05.007
|
[31] |
王明凯, 李文彬, 文剑. 基于探地雷达对粗根的识别技术研究[J]. 森林工程, 2020, 36(3): 21−27.
Wang M K, Li W B, Wen J. Study on recognition technology of coarse roots using ground-penetrating radar[J]. Forest Engineering, 2020, 36(3): 21−27.
|
[32] |
邱啟璜, 牛健植, 王迪, 等. 基于探地雷达识别林地粗根和石砾[J]. 北京林业大学学报, 2023, 45(7): 99−109.
Qiu Q H, Niu J Z, Wang D, et al. Identification of coarse roots and rock fragments in woodland based on ground penetrating radar[J]. Journal of Beijing Forestry University, 2023, 45(7): 99−109.
|
[33] |
朱安宁, 吉丽青, 张佳宝, 等. 不同类型土壤介电常数与体积含水量经验关系研究[J]. 土壤学报, 2011, 48(2): 263−268.
Zhu A N, Ji L Q, Zhang J B, et al. Empirical relationship between soil dielectric constant and volumetric water content in various soils[J]. Acta Pedologica Sinica, 2011, 48(2): 263−268.
|
1. |
鲜茂森,何季芮. 基于车载视觉传感器的多目标检测跟踪技术研究. 科技创新与应用. 2025(02): 110-113+117 .
![]() | |
2. |
陈万志,袁航. 改进YOLOv8n的林业害虫检测方法. 北京林业大学学报. 2025(02): 119-131 .
![]() | |
3. |
王鹏,张磊,左鹏,刘新娜,安杰飞. 基于探地雷达数据的地层模型快速反演技术. 电子设计工程. 2024(23): 136-139+144 .
![]() |