Citation: | Wang Jin, Long Ling, Liu Ru, Yin Jiangping, Sun Yuhui. Properties of finish foil enhanced by quaternized nanocellulose[J]. Journal of Beijing Forestry University, 2024, 46(3): 145-152. DOI: 10.12171/j.1000-1522.20230281 |
In order to solve the environmental problems such as formaldehyde release of melamine-urea formaldehyde resin for finish foil, the technology research on preparation of formaldehyde-free finish foil by formaldehyde-free water-based impregnating adhesive and coating was carried out.
Quaternized nanocellulose-modified waterborne acrylate emulsion was used as impregnating adhesive to prepare impregnated paper, and rollers were used to apply acrylic paints on its surface to prepare finish foil. X-ray photoelectron spectroscopy (XPS), thermogravimetric analyzer and mechanics test machine were used to analyze the changes of surface chemical groups and element content, thermal stability and tensile properties of finish foil.
The results showed that the longitudinal tensile strength and elongation at break of finish foil increased by 4.2 times and 3.2 times compared with base papers, respectively. In addition, finish foil could be folded at any angle with excellent flexibility. The formaldehyde emission of finish foil was 0.12 mg/L, which met the requirement of formaldehyde emission value ≤ 0.3 mg/L for F☆☆☆☆ limit according to F star rating of Japanese standard. It refers to the strictest level of formaldehyde emission tested by the desiccator method in the world. XPS analysis showed that the surface chemical structure and element content of finish foil changed compared with base paper. The surface hydrophobicity of finish foil was improved after being treated with acrylic adhesives and coating. From the thermogravimetric analysis, finish foil showed a slight decrease in thermal stability compared with base paper. In addition to surface abrasion resistance and hardness, the impact resistance, resistance to dry heat, resistance to damp heat, water resistance and resistance to pollution corrosion of finish foil-topped panels all met the requirements of GB/T 15102—2017 Surface decorated fiberboard and particleboard with paper impregnated thermosetting resins and GB/T 37005—2018 Paint finishing wood-based panels.
The finish foil enhanced by quaternized nanocellulose has good environmental and mechanical properties.
[1] |
冯云, 屈伟, 刘美宏, 等. 三聚氰胺甲醛树脂增韧改性研究进展[J]. 木材科学与技术, 2022, 36(1): 17−21.
Feng Y, Qu W, Liu M H, et al. Research review on toughening modification of melamine formaldehyde resin[J]. Chinese Journal of Wood Science and Technology, 2022, 36(1): 17−21.
|
[2] |
Gonçalves M, Ribeiro M, Paiva N T, et al. Resin and volatile content of melamine-impregnated paper assessed by near infrared spectroscopy, a simulation of the industrial process using a laboratory-scale gantry[J]. European Journal of Wood and Wood Products, 2020, 78(6): 1279−1286. doi: 10.1007/s00107-020-01589-8
|
[3] |
李慧, 姜贵军, 张一帆. 预油漆纸用水性氨基/丙烯酸涂料的制备与性能研究[J]. 涂料工业, 2015, 45(2): 16−20. doi: 10.3969/j.issn.0253-4312.2015.02.004
Li H, Jiang G J, Zhang Y F. Preparation and characterization of waterborne melamine/acrylic coatings for finish foil[J]. Paint and Coatings Industry, 2015, 45(2): 16−20. doi: 10.3969/j.issn.0253-4312.2015.02.004
|
[4] |
Yu Z H, Yan Z Y, Zhang F H, et al. Waterborne acrylic resin co-modified by itaconic acid and gamma-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance[J]. Progress in Organic Coatings, 2022(7): 106875.
|
[5] |
Spagnuolo L, D’Orsi R, Operamolla A. Nanocellulose for paper and textile coating: the importance of surface chemistry[J]. ChemPlusChem, 2022, 87: 1−26.
|
[6] |
Zhu W K, Ji M X, Chen F Q, et al. Formaldehyde-free resin impregnated paper reinforced with cellulose nanocrystal (CNC): formulation and property analysis[J]. Journal of Applied Polymer Science, 2020: 48931.
|
[7] |
Wang J, Liu J, Long L. Bio-based impregnated resin preparation for aldehyde-free decorative paper production[J]. Coatings, 2023(13): 1168.
|
[8] |
付高位, 冯旺龙, 王定坤, 等. 交联改性丙烯酸酯乳液及其在装饰纸上的应用研究[J]. 林产化学与工业, 2021, 41(6): 57−66.
Fu G W, Feng W L, Wang D K, et al. Cross-linked acrylic emulsion and its application in decorative paper[J]. Chemistry and Industry of Forest Products, 2021, 41(6): 57−66.
|
[9] |
Farah N H, Salmah H, Marliza M. Effect of butyl methacrylate on properties of regenerated cellulose coconut shell biocomposite films[J]. Procedia Chemistry, 2016, 19: 335−339. doi: 10.1016/j.proche.2016.03.020
|
[10] |
周晓剑, 王文丽, 李斌, 等. 超支化聚合物改性三聚氰胺甲醛树脂的物理性能研究[J]. 西南林业大学学报(自然科学), 2018, 38(6): 166−171.
Zhou X J, Wang W L, Li B, et al. The physical properties of melamine-formaldehyde resin modified with hyperbranch polymers[J]. Journal of Southwest Forestry University (Natural Science), 2018, 38(6): 166−171.
|
[11] |
Salthammer T. Formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings[J]. Building and Environment, 2019, 150: 219−232. doi: 10.1016/j.buildenv.2018.12.042
|
[12] |
Xu J F, Li X Y, Liu R, et al. Dialdehyde modified cellulose nanofibers enhanced the physical properties of decorative paper impregnated by aldehyde-free adhesive[J]. Carbohydrate Polymers, 2020: 116941.
|
[13] |
李芝华, 任冬燕, 丑纪能, 等. 聚氨酯改性环氧树脂的制备及红外光谱分析[J]. 热固性树脂, 2006, 21(1): 8−11. doi: 10.3969/j.issn.1002-7432.2006.01.003
Li Z H, Ren D Y, Qiu J N, et al. Preparation and FTIR analysis of the epoxy modified by polyurethane[J]. Thermosetting Resin, 2006, 21(1): 8−11. doi: 10.3969/j.issn.1002-7432.2006.01.003
|
[14] |
郭慧敏, 李翔宇, 王海彦, 等. 纤维素和聚丙烯共催化热解热重分析及动力学研究[J]. 太阳能学报, 2017, 38(10): 2705−2711.
Guo H M, Li X Y, Wang H Y, et al. Thermogravimetric analysis and kinetics of co-catalytic pyrolysis and polypropylene[J]. Acta Energiae Solaris Sinica, 2017, 38(10): 2705−2711.
|
[15] |
范向前, 吕志平. 非离子型聚氨酯–丙烯酸酯复合乳液的研究[J]. 聚氨酯工业, 2018, 33(5): 21−23.
Fan X Q, Lü Z P. Study on nonionic polyurethane-acrylate composite emulsion[J]. Polyurethane Industry, 2018, 33(5): 21−23.
|
[1] | Dai Rui, Duan Shuaishuai, Xiao Shikui, Wei Zhipeng, Lü Shufang, Shi Guoan, Wu Jiang, Fan Bingyou. Screening of internal reference genes of cut flowers of Paeonia lactiflora and expression analysis of key genes of ethylene biosynthesis[J]. Journal of Beijing Forestry University, 2025, 47(1): 106-115. DOI: 10.12171/j.1000-1522.20240054 |
[2] | Liu Jiaming, Zhao Jian, Zhang Jianzhong, Zhao Dong. Cutting constitutive equation and its parameter measurement of oil tree peony stem[J]. Journal of Beijing Forestry University, 2020, 42(11): 138-144. DOI: 10.12171/j.1000-1522.20200229 |
[3] | Zhao Xiaozhi, Gao Li, Jia Guixia. Effects of light treatment on cutting quality of Juniperus chinensis ‘Plumosa Aurea’[J]. Journal of Beijing Forestry University, 2020, 42(8): 132-140. DOI: 10.12171/j.1000-1522.20200007 |
[4] | ZHAO Hong-gang, LE Lei, LIU Ming-li, WU Jun-hua, LIU Yan-long. Laser cutting preparation technology of solid wood parquet laminate flooring[J]. Journal of Beijing Forestry University, 2016, 38(6): 110-115. DOI: 10.13332/j.1000-1522.20150380 |
[5] | HONG Yan, CHEN Zhi-lin, DAI Si-lan. Light induction on flowering characteristics of cut chrysanthemum ‘Reagan’[J]. Journal of Beijing Forestry University, 2015, 37(3): 133-138. DOI: 10.13332/j.1000-1522.20140223 |
[6] | LI Bo, LI Shu-sen, YANG Hong-ze, LI Bin.. Analysis of occupational hazards in gardeners爷cutting#br# irrigation posture.[J]. Journal of Beijing Forestry University, 2014, 36(2): 145-148. |
[7] | ZHANG Wen-chao, CAO Yuan, WU Jia-ye, HAO Rui-zhi, JING Yan-ping. Laser microdissection system of poplar anther.[J]. Journal of Beijing Forestry University, 2013, 35(1): 139-143. |
[8] | CHEN Cheng, YU Guo-sheng. Effect of sliding cutting angle of bush reciprocating cutter on bush cutting[J]. Journal of Beijing Forestry University, 2011, 33(2): 115-119. |
[9] | HAN Ke-ting, WANG Juan, DAI Si-lan. Adventitous shoot regeneration from internode transverse thin cell layers of cut spray chrysanthemum.[J]. Journal of Beijing Forestry University, 2009, 31(2): 102-107. |
[10] | YANG Yong-fu, XI Bao-tian, LI Li. Cutting forces of moso bamboo[J]. Journal of Beijing Forestry University, 2006, 28(4): 17-21. |
1. |
王佳庆. 北京市白皮松栽培技术优化研究. 现代园艺. 2025(04): 13-14+18 .
![]() | |
2. |
赵娜,吕建魁,李少宁,徐晓天,李斌,赵加辉,鲁绍伟. 不同干旱处理刺槐、侧柏光合特性与内源脱落酸含量的相关关系. 生态学报. 2024(05): 2100-2114 .
![]() | |
3. |
党毅,王维,张永娥,王渝淞,丁兵兵,樊登星,贾国栋,余新晓,董俊杰. 坝上高原不同植被类型覆盖下土壤水分含量对降雨的动态响应. 北京林业大学学报. 2023(05): 106-118 .
![]() | |
4. |
刘诗莹,鲁绍伟,李少宁,徐晓天,孙芷郁,赵娜. 北京市七种园林树种叶水势动态特征及其影响因素分析. 北方园艺. 2022(07): 75-82 .
![]() | |
5. |
岳军伟,张美妮,赵培. 秦岭南麓油松林水分利用效率的边缘效应研究. 商洛学院学报. 2022(02): 1-6 .
![]() | |
6. |
于丰源,张金鑫,孙一荣,宋立宁. 科尔沁沙地主要造林树种叶片δ~(13)C比较研究. 林业科学研究. 2022(04): 179-187 .
![]() | |
7. |
韩璐 ,杨菲 ,吴应明 ,牛云明 ,曾祎明 ,陈立欣 . 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应. 植物生态学报. 2021(12): 1350-1364 .
![]() |