• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chen Guilan, Bu Qingyu, Wang Xiuwei, Gu Huiyan. Conservation effects of different tree species of soil and water conservation forests on soil nitrogen on slopes in black soil region of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(7): 27-35. DOI: 10.12171/j.1000-1522.20230293
Citation: Chen Guilan, Bu Qingyu, Wang Xiuwei, Gu Huiyan. Conservation effects of different tree species of soil and water conservation forests on soil nitrogen on slopes in black soil region of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(7): 27-35. DOI: 10.12171/j.1000-1522.20230293

Conservation effects of different tree species of soil and water conservation forests on soil nitrogen on slopes in black soil region of northeastern China

More Information
  • Received Date: October 25, 2023
  • Revised Date: December 23, 2023
  • Available Online: June 18, 2024
  • Objective 

    This paper explores the conservation effects of different tree species of soil and water conservation forests on slope soil nitrogen in black soil region of northeastern China, so as to provide reference for the selection of prevention and control measures for nutrient loss on black soil slopes.

    Method 

    In the Keshan Farm, northwest of Heilongjiang Province of northeastern China, soil and water conservation forest of Populus spp. and water conservation forest of Pinus sylvestris var. mongolica and cultivated land with the similar slope, aspect, slope length, and forest age were selected as the research area. In the three sites, we set three lines of 315, 319, and 323 m along the downhill slope from top to bottom, respectively. Along the lines, 10 sample points were set at equal intervals with a distance of 30 m from the top of the slope. Soil samples of 0−15 cm and 15−30 cm were collected from each sample point for the measure of soil physical characteristics, total nitrogen, ammonium nitrogen, nitrate nitrogen, and particulate organic nitrogen. Cultivated land was analyzed as a control.

    Result 

    (1) The soil physical characteristics of soil and water conservation forests were better than those of cultivated land. (2) The total nitrogen content of soil and water conservation forest of Populus spp. (1.28−2.54 g/kg) was higher than that of soil and water conservation forest of Pinus sylvestris var. mongolica and cultivated land. The soil total nitrogen content of soil and water conservation forest of Pinus sylvestris var. mongolica (1.04−1.92 g/kg) was higher than that of cultivated land (0.62−1.63 g/kg). The distribution of ammonium nitrogen and particulate organic nitrogen in the soil of three sites was the same as that of total nitrogen, and the content of soil and water conservation forest of Populus spp. was the highest, while that of cultivated land was the lowest.

    Conclusion 

    The soil nitrogen content of 0−15 cm in the two forests is higher than that of 15−30 cm, and the soil nitrogen content in the forests is higher than that in the cultivated land. Soil nitrogen content in the soil and water conservation forest of Populus spp. is higher than that in the forest of Pinus sylvestris var. mongolica, and the conservation effect of soil and water conservation forest of Populus spp. on the slope in black soil area is better than that of Pinus sylvestris var. mongolica. From the perspective of soil nitrogen conservation, Populus spp. should be given priority among the two kinds of soil and water conservation species.

  • [1]
    Lex B, Kees K G, Klaas W V D H, et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900−2050 period[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(52): 20882−20887.
    [2]
    Zhang C C, Wang Y Q, Jia X X, et al. Estimates and determinants of soil organic carbon and total nitrogen stocks up to 5 m depth across a long transect on the Loess Plateau of China[J]. Journal of Soils and Sediments, 2021, 21(2): 748−765. doi: 10.1007/s11368-020-02861-3
    [3]
    陈书信, 王国兵, 阮宏华, 等. 苏北沿海不同土地利用方式土壤氮矿化季节变化特征[J]. 生态学杂志, 2014, 33(2): 276−282.

    Chen S X, Wang G B, Ruan H H, et al. Seasonal variations of soil nitrogen mineralization under different land-use types in a coastal area in northern Jiangsu, China[J]. Chinese Journal of Ecology, 2014, 33(2): 276−282.
    [4]
    刘婕, 勾晓华, 刘建国, 等. 甘南黄河流域4种典型林分土壤C、N、P化学计量特征[J]. 生态学报, 2023, 43(13): 5627−5637.

    Liu J, Gou X H, Liu J G, et al. The stoichiometric characteristics of soil C, N and P in four typical forest stands in the Yellow River Basin in Gannan[J]. Acta Ecologica Sinica, 2023, 43(13): 5627−5637.
    [5]
    许开平, 吴家森, 黄程鹏, 等. 不同植物篱在减少雷竹林氮磷渗漏流失中的作用[J]. 土壤学报, 2012, 49(5): 980−987. doi: 10.11766/trxb201109010332

    Xu K P, Wu J S, Huang C P, et al. Effect of hedgerows reducing of nitrogen and phosphorus leaching loss from Phyllostachys praecox stands[J]. Acta Pedologica Sinica, 2012, 49(5): 980−987. doi: 10.11766/trxb201109010332
    [6]
    李怀恩, 邓娜, 杨寅群, 等. 植被过滤带对地表径流中污染物的净化效果[J]. 农业工程学报, 2010, 26(7): 81−86.

    Li H E, Deng N, Yang Y Q, et al. Clarification efficiency of vegetative filter strips to several pollutants in surface runoff[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 81−86.
    [7]
    田潇, 周运超, 刘晓芸, 等. 物种配置植物篱对坡耕地营养元素拦截效应[J]. 水土保持研究, 2011, 18(6): 89−93.

    Tian X, Zhou Y C, Liu X Y, et al. Effects of hedgerow of species configuration on the interception of nutrition elements in the sloping cultivated lands[J]. Research of Soil and Water Conservation, 2011, 18(6): 89−93.
    [8]
    梁青兰, 韩友吉, 乔艳辉, 等. 干旱胁迫对黑杨派无性系生长及生理特性的影响[J]. 北京林业大学学报, 2023, 45(10): 81−89.

    Liang Q L, Han Y J, Qiao Y H, et al. Effects of drought stress on the growth and physiological characteristics of Sect. Aigeiros clones[J]. Journal of Beijing Forestry University, 2023, 45(10): 81−89.
    [9]
    马成忠, 邓继峰, 丁国栋, 等. 不同初植密度樟子松人工林对毛乌素沙地南缘土壤粒度特征的影响[J]. 水土保持学报, 2017, 31(1): 230−235.

    Ma C Z, Deng J F, Ding G D, et al. Effects of different planting densities of Mongolian pine on the soil particle size characteristics in southern Mu Us Desert[J]. Journal of Soil and Water Conservation, 2017, 31(1): 230−235.
    [10]
    韩辉, 袁春良, 张学利, 等. 基于林分生长量的沙地樟子松初植造林密度确定[J]. 辽宁林业科技, 2020(6): 1−9, 58. doi: 10.3969/j.issn.1001-1714.2020.06.001

    Han H, Yuan C L, Zhang X L, et al. Confirmation of initial planting density of Pinus sylvestris var. mongolica in sandy land based on stand growth[J]. Journal of Liaoning Forestry Science & Technology, 2020(6): 1−9, 58. doi: 10.3969/j.issn.1001-1714.2020.06.001
    [11]
    张楠楠, 关文彬, 谢静, 等. 科尔沁沙地东南缘大青沟自然保护区土壤水分的时空分布特征[J]. 生态学报, 2007, 27(9): 3860−3873. doi: 10.3321/j.issn:1000-0933.2007.09.038

    Zhang N N, Guan W B, Xie J, et al. Temporal and spatial distribution of soil moisture of Daqinggou Nature Reserve in the southeastern margin of Horqin Sandy Land, Inner Mongolia, China[J]. Acta Ecologica Sinica, 2007, 27(9): 3860−3873. doi: 10.3321/j.issn:1000-0933.2007.09.038
    [12]
    中国林业科学研究院林业所森林土壤研究室. 森林土壤水分—物理性质的测定: LY/T 1215—1999[S]. 北京: 中国标准出版社, 1999.

    Forest Soil Research Laboratory, Forestry Research Institute, Chinese Academy of Forestry Sciences. Determination of forest soil water-physical properties: LY/T 1215−1999[S]. Beijing: China Standard Press, 1999.
    [13]
    Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777−783.
    [14]
    任玉连, 陆梅, 曹乾斌, 等. 南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征[J]. 北京林业大学学报, 2019, 41(11): 104−115.

    Ren Y L, Lu M, Cao Q B, et al. Spatial distribution characteristics of soil organic carbon and total nitrogen stocks across the different typical vegetation types in Nangunhe National Nature Reserve, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(11): 104−115.
    [15]
    刘冠宏, 李炳怡, 宫大鹏, 等. 林火对北京平谷区油松林土壤化学性质的影响[J]. 北京林业大学学报, 2019, 41(2): 29−40.

    Liu G H, Li B Y, Gong D P, et al. Effects of forest fire on soil chemical properties of Pinus tabuliformis forest in Pinggu District of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(2): 29−40.
    [16]
    许书军, 魏世强, 谢德体. 非点源污染影响因素及区域差异[J]. 长江流域资源与环境, 2004, 13(4): 389−393. doi: 10.3969/j.issn.1004-8227.2004.04.018

    Xu S J, Wei S Q, Xie D T. Analysis of non-point source pollution influence factors and their discrepancy[J]. Resources and Environment in the Yangtze Basin, 2004, 13(4): 389−393. doi: 10.3969/j.issn.1004-8227.2004.04.018
    [17]
    王恒星, 张建军, 孙若修, 等. 晋西黄土区不同植被格局坡面产流产沙特征[J]. 北京林业大学学报, 2021, 43(3): 85−95. doi: 10.12171/j.1000-1522.20190231

    Wang H X, Zhang J J, Sun R X, et al. Effects of different vegetation slope patterns on infiltration and characteristics of runoff and sediment production in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 85−95. doi: 10.12171/j.1000-1522.20190231
    [18]
    林超文, 庞良玉, 罗春燕, 等. 平衡施肥及雨强对紫色土养分流失的影响[J]. 生态学报, 2009, 29(10): 5552−5560. doi: 10.3321/j.issn:1000-0933.2009.10.045

    Lin C W, Pang L Y, Luo C Y, et al. Effect of balanced fertilization and rain intensity on nutrient losses from a purple soil in Sichuan[J]. Acta Ecologica Sinica, 2009, 29(10): 5552−5560. doi: 10.3321/j.issn:1000-0933.2009.10.045
    [19]
    郭二辉, 方晓, 马丽, 等. 河岸带农田不同恢复年限对土壤碳氮磷生态化学计量特征的影响——以温榆河为例[J]. 生态学报, 2020, 40(11): 3785−3794.

    Guo E H, Fang X, Ma L, et al. Effects of different recovery years on the ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in riparian farmland: a case study of Wenyu River[J]. Acta Ecologica Sinica, 2020, 40(11): 3785−3794.
    [20]
    李晓欣, 胡春胜, 程一松. 不同施肥处理对作物产量及土壤中硝态氮累积的影响[J]. 干旱地区农业研究, 2003, 21(3): 38−42. doi: 10.3321/j.issn:1000-7601.2003.03.008

    Li X X, Hu C S, Cheng Y S. Effect of different fertilizers on crop yield and nitrate accumulation[J]. Agricultural Research in the Arid Areas, 2003, 21(3): 38−42. doi: 10.3321/j.issn:1000-7601.2003.03.008
    [21]
    冯波, 孔令安, 张宾, 等. 施氮量对垄作小麦氮肥利用率和土壤硝态氮含量的影响[J]. 作物学报, 2012, 38(6): 1107−1114.

    Feng B, Kong L A, Zhang B, et al. Effect of nitrogen application level on nitrogen use efficiency in wheat and soil nitrate-N content under bed planting condition[J]. Acta Agronomica Sinica, 2012, 38(6): 1107−1114.
    [22]
    鲁艺, 牟长城, 高旭, 等. 林型和林龄对嫩江沙地人工林生态系统碳储量影响规律研究[J]. 北京林业大学学报, 2023, 45(10): 16−27. doi: 10.12171/j.1000-1522.20220294

    Lu Y, Mu C C, Gao X, et al. Effects of forest type and stand age on ecosystem carbon storage of plantations in Nenjiang Sandy Land of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 16−27. doi: 10.12171/j.1000-1522.20220294
    [23]
    曾晓敏, 高金涛, 范跃新, 等. 中亚热带森林转换对土壤磷积累的影响[J]. 生态学报, 2018, 38(13): 4879−4887.

    Zeng X M, Gao J T, Fan Y X, et al. Effect of soil factors after forest conversion on the accumulation of phosphorus species in mid-subtropical forests[J]. Acta Ecologica Sinica, 2018, 38(13): 4879−4887.
    [24]
    赵秀云, 韩素芬. 杨树根际固氮菌的分离、筛选和鉴定[J]. 南京林业大学学报, 2000, 24(3): 17−20.

    Zhao X Y, Han S F. Isolation‚selection and identification of nitrogen fixing bacteria in poplar rhizosphere[J]. Journal of Nanjing Forestry University, 2000, 24(3): 17−20.
    [25]
    刘晓彤, 李海奎, 曹磊, 等. 广东省森林土壤养分异质性析因[J]. 北京林业大学学报, 2021, 43(2): 90−101.

    Liu X T, Li H K, Cao L, et al. Analysis on the heterogeneity of forest soil nutrients in Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 90−101.
    [26]
    方晰, 田大伦, 秦国宣, 等. 杉木林采伐迹地连栽和撂荒对林地土壤养分与酶活性的影响[J]. 林业科学, 2009, 45(12): 65−71. doi: 10.11707/j.1001-7488.20091211

    Fang X, Tian D L, Qin G X, et al. Nutrient contents and enzyme activities in the soil of Cunninghamia lanceolata forests of successive rotation and natural restoration with follow after clear-cutting[J]. Scientia Silvae Sinicae, 2009, 45(12): 65−71. doi: 10.11707/j.1001-7488.20091211
    [27]
    冯燕辉, 梁文俊, 魏曦, 等. 关帝山不同海拔梯度华北落叶松林土壤养分特征分析[J]. 西部林业科学, 2020, 49(4): 68−73, 98.

    Feng Y H, Liang W J, Wei X, et al. Analysis of soil nutrient characteristics of Larix principis-rupprechtii forests with different altitude gradients in Guandi Mountain[J]. Journal of West China Forestry Science, 2020, 49(4): 68−73, 98.
    [28]
    王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3): 741−748.

    Wang K, Zhao C J, Zhang R S, et al. Soil carbon nitrogen and phosphorus stoichiometry of Pinus sylvestris var. mongolica plantations with different densities[J]. Chinese Journal of Ecology, 2020, 39(3): 741−748.
    [29]
    王凯, 雷虹, 石亮, 等. 沙地樟子松带状混交林土壤碳氮磷化学计量特征[J]. 应用生态学报, 2019, 30(9): 2883−2891.

    Wang K, Lei H, Shi L, et al. Soil carbon nitrogen and phosphorus stoichiometry characteristics of Pinus sylvestris var. mongolica belt-mixed forests[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 2883−2891.
    [30]
    赵文东, 李凯, 沈健, 等. 坡位和坡度对黑木相思人工林土壤养分空间分布的影响[J]. 东北林业大学学报, 2022, 50(9): 78−84, 104.

    Zhao W D, Li K, Shen J, et al. Effects of slope position and gradient on spatial distribution of soil nutrient in Acacia melanoxylon plantation[J]. Journal of Northeast Forestry University, 2022, 50(9): 78−84, 104.
    [31]
    于东伟, 雷泽勇, 张岩松, 等. 沙地樟子松人工林的生长对土壤氮变化的影响[J]. 干旱区资源与环境, 2020, 34(6): 179−186.

    Yu D W, Lei Z Y, Zhang Y S, et al. Plantation on soil nitrogen change in sandy land[J]. Journal of Arid Resources and Environment, 2020, 34(6): 179−186.
    [32]
    祁金虎. 辽东山区天然次生栎林土壤有机碳含量及其与理化性质的关系[J]. 水土保持学报, 2017, 31(4): 135−140, 171.

    Qi J H. Content of soil organic carbon and its relations with physicochemical properties of secondary natural oak forests in eastern mountain area of Liaoning Province[J]. Journal of Soil and Water Conservation, 2017, 31(4): 135−140, 171.
    [33]
    胡芳, 杜虎, 曾馥平, 等. 典型喀斯特峰丛洼地不同植被恢复对土壤养分含量和微生物多样性的影响[J]. 生态学报, 2018, 38(6): 2170−2179.

    Hu F, Du H, Zeng F P, et al. Dynamics of soil nutrient content and microbial diversity following vegetation restoration in a typical karst peak-cluster depression landscape[J]. Acta Ecologica Sinica, 2018, 38(6): 2170−2179.
    [34]
    王宪伟, 孙丽, 杜宇, 等. 大兴安岭多年冻土区泥炭地土壤性质与微生物呼吸活性研究[J]. 湿地科学, 2021, 19(6): 682−690.

    Wang X W, Sun L, Du Y, et al. Soil property and microbial respiration activity of peatland in permafrost region in Greater Hinggan Mountains[J]. Wetland Science, 2021, 19(6): 682−690.
    [35]
    段成伟, 李希来, 柴瑜, 等. 不同修复措施对黄河源退化高寒草甸植物群落与土壤养分的影响[J]. 生态学报, 2022, 42(18): 7652−7662.

    Duan C W, Li X L, Chai Y, et al. Effects of different rehabilitation measures on plant community and soil nutrient of degraded alpine meadow in the Yellow River Source[J]. Acta Ecologica Sinica, 2022, 42(18): 7652−7662.
    [36]
    李程程, 曾全超, 贾培龙, 等. 黄土高原土壤团聚体稳定性及抗蚀性能力经度变化特征[J]. 生态学报, 2020, 40(6): 2039−2048.

    Li C C, Zeng Q C, Jia P L, et al. Characteristics of soil aggregate stability and corrosion resistance longitude change in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(6): 2039−2048.
    [37]
    李聪, 陆梅, 任玉连, 等. 文山典型亚热带森林土壤氮组分的海拔分布及其影响因子[J]. 北京林业大学学报, 2020, 42(12): 63−73.

    Li C, Lu M, Ren Y L, et al. Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(12): 63−73.
    [38]
    刘云霞, 胡亚林, 曾德慧, 等. 科尔沁沙地草地营造樟子松人工林对土壤化学和生物学性状的影响[J]. 应用生态学报, 2010, 21(4): 814−820.

    Liu Y X, Hu Y L, Zeng D H, et al. Effects of grassland afforestation with Mongolian pine on soil chemical and biological properties in Keerqin Sandy Land[J]. Chinese Journal of Applied Ecology, 2010, 21(4): 814−820.
    [39]
    张岩松, 雷泽勇, 于东伟, 等. 沙质草地营造樟子松林后土壤容重的变化及其影响因子[J]. 生态学报, 2019, 39(19): 7144−7152.

    Zhang Y S, Lei Z Y, Yu D W, et al. Changes in soil bulk density and its influencing factors after sandy grassland afforestation with Pinus sylvestris var. mongolica[J]. Acta Ecologica Sinica, 2019, 39(19): 7144−7152.
    [40]
    李鹏, 陈璇, 杨章旗, 等. 不同密度马尾松人工林枯落物输入对土壤理化性质的影响[J]. 水土保持学报, 2022, 36(2): 368−377.

    Li P, Chen X, Yang Z Q, et al. Effects of litter input on soil physical and chemical properties of Pinus massoniana plantations with different densities[J]. Journal of Soil and Water Conservation, 2022, 36(2): 368−377.
    [41]
    胡树平, 包海柱, 孟天天, 等. 深松对土壤物理性质及油用向日葵产量性状的影响[J]. 内蒙古农业大学学报(自然科学版), 2020, 41(3): 4−9.

    Hu S P, Bao H Z, Meng T T, et al. Effect of sub-soiling on soil characteristics and yield characters of oil sunflower[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2020, 41(3): 4−9.
    [42]
    杜满聪, 李江涛, 李淑玲, 等. 不同耕作方式对华南坡耕地土壤孔隙结构和抗穿透强度影响[J]. 广州大学学报(自然科学版), 2018, 17(6): 74−80.

    Du M C, Li J T, Li S L, et al. Effects of different tillage methods on soil pore structure and penetration resistance of slope farmland in south China[J]. Journal of Guangzhou University(Natural Science Edition), 2018, 17(6): 74−80.
  • Cited by

    Periodical cited type(9)

    1. 王喜刚,郭成瑾,焦杨,赵沛,田静,张丽荣,沈瑞清. 哈茨木霉M-17厚垣孢子可湿性粉剂的研制及其对马铃薯干腐病的田间防效. 中国生物防治学报. 2024(06): 1319-1330 .
    2. 申云鑫,李铭刚,施竹凤,赵江源,王楠,李者芬,杨明英,陈齐斌,杨佩文. 贝莱斯芽胞杆菌SH-1471可湿性粉剂研制及其对番茄枯萎病的防治效果. 中国生物防治学报. 2023(04): 904-914 .
    3. 薛德星,李美,高兴祥,李健. 生防菌棘孢木霉的分离鉴定及生物学特性研究. 山东农业科学. 2023(10): 118-123 .
    4. 张成,李欣雨,邹艺琴,王睿,侯巨梅,廖文敏,刘铜. 木霉菌Trichoderma brev可湿性粉剂的研制. 农药. 2022(05): 329-335 .
    5. 胡建坤,黄蓉,黄瑞荣,朱植银,王玉,曾钦华. 2种化学杀菌剂与木霉及其组配制剂对辣椒疫病防控效果研究. 生物灾害科学. 2021(04): 460-464 .
    6. 庄新亚,程亮,郭青云. 燕麦镰刀菌GD-2可湿性粉剂研制及对野燕麦的防除效果. 青海大学学报. 2020(03): 9-17+43 .
    7. 遇文婧,宋小双,邓勋,平晓帆,周琦,刘志华. 刺激植物响应蛋白基因Epl1克隆、原核表达及功能初探. 北京林业大学学报. 2018(01): 17-26 . 本站查看
    8. 徐沛东,朱植银,黄加诚,肖永良,谢远芳,魏方林. 新型生物农药棘孢木霉菌防治辣椒疫病应用研究. 生物灾害科学. 2017(03): 172-175 .
    9. 罗洋,滕应,罗绪强,李振高. 里氏木霉FS10-C可湿性粉剂的研制及其促生效果测定. 生物技术通报. 2016(08): 194-199 .

    Other cited types(8)

Catalog

    Article views (272) PDF downloads (43) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return