Citation: | Shao Chenxi, Liang Yingmei, Lao Wenhao, Li Yunfan. Histological and physiopathology characteristics in the interaction of Gymnosporangium yamadae and Malus domestica leaves[J]. Journal of Beijing Forestry University, 2024, 46(11): 34-42. DOI: 10.12171/j.1000-1522.20230298 |
The study aimed to determine the histopathological process of pathogen and investigate the physiological and metabolic response mechanisms of the host during specific infection of Gymnosporangium yamadae on apple (Malus domestica) leaves, and investigate the pathological mechanisms underlying the host-specific selection of the rust, so as to lay the groundwork for further research on pathogenetic molecular mechanisms of G. yamadae.
After artificially inoculating apple leaves with G. yamadae basidiospores, the infection structures of pathogen and cytology changes of the host were observed continuously using microtechnic; the contents of hydrogen peroxide, peroxidase (POD) and total phenol of infected apple leaves showed chlorotic flecks and at the pycnium and aecium stages were determined using TU-1810 UV-visible spectrophotometer.
G. yamadae basidiospores germinated and produced germ tubes after 6 hpi (hours past inoculation) and directly entered into apple leaf epidermal cells at 12 hpi, intercellular mycelia formed at 24 hpi and secondary mycelia with diaphragm were observed at 72 hpi. After 7 dpi (days past inoculation), intercellular mycelia or haustorial mother cells entered into host cells, resulting in the formation of monokaryotic haustoria. After 10 dpi, the pycnium and pycniosporophores were observed on the surface of apple leaves and the aecium and aeciospores were formed on the undersides of apple leaves at 60 d. The morphological structure of host cells did not visually change before infected leaves showing chlorotic flecks. However, the cytoplasmic staining of host cells lightened, and the morphology of organelles distorted when the host leaves showed chlorotic flecks (numbers of haustorium were formed and developed). In the spermogonial stage, host cell membranes and organelles became ablation. During the formation of aeciospores, host cells began to necrotic. The content of hydrogen peroxide decreased first and then increased slightly, while the activity of POD and the content of total phenol showed an increasing trend of different amplitude in infected apple leaves.
The basidiospores of G. yamadae germinate to produce germ tubes and appressorium directly enters the host epidermal cells (0−5 dpi). The number of monokaryotic haustoria is formed by intercellular mycelia or haustorial mother cells to establish the biotrophic parasitic relationship with the host (5−10 dpi). Finally, the rust further develops to produce the spermatia and aeciospores (after 10 dpi). Susceptible reactions of host cells begin with haustorium entering mesophyll cells, and necrosis of host cells occurres in the aecial stage. Furthermore, the infection of G. yamadae results in the considerable accumulation of phenols in apple leaves, which might play a crucial role in maintaining low reactive oxygen species in the host.
[1] |
李保华, 王彩霞, 董向丽. 我国苹果主要病害研究进展与病害防治中的问题[J]. 植物保护, 2013, 39(5): 46−54. doi: 10.3969/j.issn.0529-1542.2013.05.007
Li B H, Wang C X, Dong X L. Research progress in apple diseases and problems in the disease management in China[J]. Plant Protection, 2013, 39(5): 46−54. doi: 10.3969/j.issn.0529-1542.2013.05.007
|
[2] |
Zhao P, Qi X H, Crous P W, et al. Gymnosporangium species on Malus: species delineation, diversity and host alternation[J]. Persoonia, 2020, 45(1): 68−100. doi: 10.3767/persoonia.2020.45.03
|
[3] |
Tao S Q, Cao B, Kakishima M, et al. Species diversity, taxonomy, and phylogeny of Gymnosporangium in China[J]. Mycologia, 2020, 112(5): 941−973. doi: 10.1080/00275514.2020.1790272
|
[4] |
Tao S Q, Cao B, Tian C M, et al. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum)[J]. BMC Genomics, 2017, 18(1): 651. doi: 10.1186/s12864-017-4059-x
|
[5] |
Tao S Q, Cao B, Morin E, et al. Comparative transcriptomics of Gymnosporangium spp. teliospores reveals a conserved genetic program at this specific stage of the rust fungal life cycle[J]. BMC Genomics, 2019, 20(1): 723. doi: 10.1186/s12864-019-6099-x
|
[6] |
Tao S Q, Auer L, Morin E, et al. Transcriptome analysis of apple leaves infected by the rust fungus Gymnosporangium yamadae at two sporulation stages[J]. Molecular Plant-Microbe Interaction, 2020, 33(3): 444−461. doi: 10.1094/MPMI-07-19-0208-R
|
[7] |
翁涵, 刘霞, 陶思齐, 等. 山田胶锈菌和亚洲胶锈菌吸器的比较转录组分析[J]. 生物工程学报, 2022, 38(10): 3825−3843.
Weng H, Liu X, Tao S Q, et al. Comparative transcriptomic analysis of the haustoria of Gymnosporangium yamadae and G. asiaticum[J]. Chinese Journal of Biotechnology, 2022, 38(10): 3825−3843.
|
[8] |
董向丽, 李海燕, 孙丽娟, 等. 苹果锈病防治药剂筛选及施药适期研究[J]. 植物保护, 2013, 39(2): 174−179. doi: 10.3969/j.issn.0529-1542.2013.02.035
Dong X L, Li H Y, Sun L J, et al. Control effects and optimal spraying time of fungicides to apple rust caused by Gymnosporangium yamadae[J]. Plant Protection, 2013, 39(2): 174−179. doi: 10.3969/j.issn.0529-1542.2013.02.035
|
[9] |
Mims C W. Fine structure of basidiospores of the cedar-apple rust fungus Gymnosporangium juniperi-virginianae[J]. Botany, 1977, 55(9): 1057−1063.
|
[10] |
Mims C W, Richardson E A. Ultrastructure of secondary spore formation in the rust Gymnosporangium juniperi-virginianae[J]. Mycologia, 1990, 82(2): 236−244. doi: 10.1080/00275514.1990.12025869
|
[11] |
周世国. 梨胶锈菌性孢子和锈孢子阶段吸器的超微结构研究[J]. 真菌学报, 1992, 11(4): 289−293.
Zhou S G. Ultrastructural studies on the haustorium of Gymnosporangium haraeanum in the pycnio-and aecio stage[J]. Mycologia, 1992, 11(4): 289−293.
|
[12] |
黄丽丽, 康振生, 马远利. 胶锈菌在贴梗海棠上发育过程的电镜观察[J]. 西北农业学报, 1994, 3(4): 37−40.
Huang L L, Kang Z S, Ma L Y. Electron microscopy observation of development of Gymnosporangium haraeanum on Chaenomeles speciose[J]. Acta agriculturae Boreali-occidentalis Sinica, 1994, 3(4): 37−40.
|
[13] |
Lee S K, Kakishima M. Surface structures of peridial cells of Gymnosporangium and Roestelia (Uredinales)[J]. Mycoscience, 1999, 40(2): 121−131. doi: 10.1007/BF02464290
|
[14] |
刘霞, 陶思齐, 翁涵, 等. 山田胶锈菌和亚洲胶锈菌吸器提取体系建立[J]. 菌物学报, 2019, 38(9): 1430−1439.
Liu X, Tao S Q, Weng H, et al. Construction of haustorial isolation systems of Gymnosporangium yamadae and G. asiaticum[J]. Mycosystema, 2019, 38(9): 1430−1439.
|
[15] |
赵鹏, 田呈明, 曹支敏. 杨树与栅锈菌互作中生理代谢变化[J]. 西北林学院学报, 2007, 22(4): 124−127. doi: 10.3969/j.issn.1001-7461.2007.04.031
Zhao P, Tian C M, Cao Z M. Dynamic changes of physiological metabolism during the interaction of poplar and Melampsora larici-populina Kleb[J]. Journal of Northwest Forestry University, 2007, 22(4): 124−127. doi: 10.3969/j.issn.1001-7461.2007.04.031
|
[16] |
王晨芳, 黄丽丽, 张宏昌, 等. 小麦–条锈菌互作过程中活性氧及保护酶系的变化研究[J]. 植物病理学报, 2009, 39(1): 52−60. doi: 10.3321/j.issn:0412-0914.2009.01.008
Wang C F, Huang L L, Zhang H C, et al. Changes of reactive oxygen species and protective enzymes in the interaction of wheat and Puccinia striiformis f. sp. tritici[J]. Acta Phytopathologica Sinica, 2009, 39(1): 52−60. doi: 10.3321/j.issn:0412-0914.2009.01.008
|
[17] |
Mishra R K, Mishra K K, Jaiswal R K, et al. Biochemical changes in pea (Pisum sativum L. ) infected by Uromyces fabae[J]. Indian Phytopathology, 2010, 63(2): 222−224.
|
[18] |
Kalisz S, Oszmianski J, Wojdyo A. Increased content of phenolic compounds in pear leaves after infection by the pear rust pathogen[J]. Physiological and Molecular Plant Pathology, 2015, 91: 113−119. doi: 10.1016/j.pmpp.2015.07.001
|
[19] |
Lu Y, Chen Q, Bu Y, et al. Flavonoid accumulation plays an important role in the rust resistance of Malus plant leaves[J]. Frontiers in Plant Science, 2017, 8: 1286. doi: 10.3389/fpls.2017.01286
|
[20] |
Tang J, Dunshea F R, Suleria H A R. LC-ESI-QTOF/MS characterization of phenolic compounds from medicinal plants (hops and juniper berries) and their antioxidant activity[J]. Foods, 2019, 9(1): 7. doi: 10.3390/foods9010007
|
[21] |
Shen N, Wang T F, Gan Q, et al. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity[J]. Food Chemistry, 2022, 383(30): 132531.
|
[22] |
Sarkar D, Shetty K. Metabolic stimulation of plant phenolics for food preservation and health[J]. Annual Review of Food Science and Technology, 2014, 5: 395−413. doi: 10.1146/annurev-food-030713-092418
|
[23] |
康振生. 植物病原真菌的超微结构[M]. 北京: 中国科学技术出版社, 1996: 1−92.
Kang Z S. Ultrastructure of plant pathogenic fungi[M]. Beijing: China Science and Technology Press, 1996: 1−92.
|
[24] |
Sergiev I, Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants[J]. Comptes Rendus de I’Academie Bulgare des Sciences, 1997, 51: 121−124. doi: 10.7202/305635ar
|
[25] |
李江华, 王贵禧, 梁丽松, 等. 桐柏大枣气调贮藏期间几种酶活性变化[J]. 食品科学, 2006, 27(6): 234−237. doi: 10.3321/j.issn:1002-6630.2006.06.055
Li J H, Wang G X, Liang L S, et al. Changes of some enzyme activity of ‘Tongbai jujube’ fruit during controlled atmosphere storage[J]. Food Science, 2006, 27(6): 234−237. doi: 10.3321/j.issn:1002-6630.2006.06.055
|
[26] |
高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 211-222.
Gao J F. Plant physiology experiment techniques[M]. Beijing: Higher Education Press, 2006: 211−222.
|
[27] |
Mims C W, Richardson E A. Ultrastructure of appressorium development by basidiospore germlings of the rust fungus Gymnosporangium juniperi-virginianae[J]. Protoplasma, 1989, 148(2): 111−119.
|
[28] |
赵杰, 赵元元, 李巧, 等. 小麦条锈菌转主寄主小檗 (Berberis germanensis) 的人工接种鉴定[J]. 植物病理学报, 2017, 47(2): 274−277.
Zhao J, Zhao Y Y, Li Q, et al. Identification of Berberis germanensis as an alternate host of Puccinia striiformis f. sp. tritici under artificial conditions[J]. Acta Phytopathological Sinica, 2017, 47(2): 274−277.
|
[29] |
Heath M C. Signaling between pathogenic rust fungi and resistant or susceptible host plants[J]. Annals of Botany, 1997, 80(6): 713−720. doi: 10.1006/anbo.1997.0507
|
[30] |
Shao C X, Lao W H, Liang Y M. Reference genes selection of Gymnosporangium yamadae during the interaction with apple leaves[J]. Journal of Fungi, 2022, 8(8): 830. doi: 10.3390/jof8080830
|
[31] |
Gold R E, Littlefield L J, Statler G D. Ultrastructure of the pycnial and aecial stages of Puccinia recondite[J]. Canadian Journal of Botany, 1979, 57(1): 74−86. doi: 10.1139/b79-015
|
[32] |
Chethana K, Jayawardena R S, Chen Y J, et al. Appressorial interactions with host and their evolution[J]. Fungal Diversity, 2021, 110(1): 75−107. doi: 10.1007/s13225-021-00487-5
|
[33] |
Harder D E, Chong J. Ultrastructure of spermatium ontogeny in Puccinia coronata avenae[J]. Canadian Journal of Botany, 1978, 56(4): 395−403. doi: 10.1139/b78-049
|
[34] |
田呈明, 梁英梅, 康振生, 等. 杨树与栅锈菌互作的细胞学研究[J]. 林业科学, 2002, 38(3): 87−93.
Tian C M, Liang Y M, Kang Z S, et al, Cytological studies on the host-pathogen relationship in the course of poplar leaf infection by Melampsora larici-populina[J]. Scientia Silvae Sinicae, 2002, 38(3): 87−93.
|
[35] |
Figueroa M, Dodds P N, Henningsen E C. Evolution of virulence in rust fungi-multiple solutions to one problem[J]. Current Opinion in Plant Biology, 2020, 56: 20−27. doi: 10.1016/j.pbi.2020.02.007
|
[36] |
庄华, 段婉露, 杨婷, 等. 小檗NPR1在小麦条锈菌侵染过程中的表达特征[J]. 植物病理学报, 2019, (49)6: 773−781.
Zhuang H, Duan W L, Yang T, et al. Expression pattern of barberry NPR1 during the infection of Puccinia striiformis f. sp. tritici[J]. Acta Phytopathological Sinica, 2019, (49)6: 773−781.
|
[37] |
Duplessis S, Lorrain C, Petre B, et al. Host adaptation and virulence in heteroecious rust fungi[J]. Annual Review of Phytopathology, 2021, 59(1): 403−422. doi: 10.1146/annurev-phyto-020620-121149
|
[38] |
Waszczak C, Carmody M, Kangasjarvi J. Reactive oxygen species in plant signaling[J]. Annual Review of Plant Biology, 2018, 69: 209−236. doi: 10.1146/annurev-arplant-042817-040322
|
[39] |
曾永三, 王振中. 豇豆与锈菌互作中的活性氧代谢研究[J]. 植物病理学报, 2004, 34(2): 142−153. doi: 10.3321/j.issn:0412-0914.2004.02.009
Zeng Y S, Wang Z Z. Studies on the metabolism of active oxygen species during the interactions of cowpea and rust pathogen[J]. Acta Phytopathologica Sinica, 2004, 34(2): 142−153. doi: 10.3321/j.issn:0412-0914.2004.02.009
|
[40] |
陈祖静, 曹支敏, 苟兴庆, 等. 杨树与松杨栅锈菌互作中寄主活性氧及抗性相关酶变化[J]. 林业科学, 2010, 46(8): 101−106. doi: 10.11707/j.1001-7488.20100815
Chen Z J, Cao Z M, Gou X Q, et al. Dynamic changes of oxygen and related enzymes of the host in interaction between the poplar and Melampsora larici-populina[J]. Scientia Silvae Sinicae, 2010, 46(8): 101−106. doi: 10.11707/j.1001-7488.20100815
|
[41] |
金莹, 孙爱东, 胡晓丹, 等. 苹果多酚的超声波提取及抗氧化作用研究[J]. 北京林业大学学报, 2007, 29(5): 137−141. doi: 10.3321/j.issn:1000-1522.2007.05.027
Jin Y, Sun A D, Hu X D, et al. Ultrasonic extraction and antioxidant activities of apple polyphenols[J]. Journal of Beijing Forestry University, 2007, 29(5): 137−141. doi: 10.3321/j.issn:1000-1522.2007.05.027
|
[1] | Chen Xiaomeng, Wang Yuechen, Chai Xuying, Li Aining, Wang Yonglin. Deletion mutations and its phenotypic analysis of two-component genes in Lonsdalea populi[J]. Journal of Beijing Forestry University, 2021, 43(9): 25-37. DOI: 10.12171/j.1000-1522.20210007 |
[2] | Zhang Ping, Li Chaoyang, Zhao Qingquan, Wang Lihai, Ma Ling. Inhibition effects of biocontrol bacteria strains on the pathogen of Camellia oleifera anthracnose[J]. Journal of Beijing Forestry University, 2020, 42(10): 107-116. DOI: 10.12171/j.1000-1522.20190409 |
[3] | GAN Lu, SU Hao-tian, LING Xin-wen, YIN Shu-xia. Rust pathogen identification and mechanism of disease-resistance research on Kentucky bluegrass dwarf mutant[J]. Journal of Beijing Forestry University, 2017, 39(3): 87-92. DOI: 10.13332/j.1000-1522.20160315 |
[4] | LIU Jian-feng, ZHANG Yu-chu, LIU Ting, Celal Tuncer, CHENG Yun-qing. Screening of a highly pathogenic strain against hazelnut weevil and microscopic observation on its infection process[J]. Journal of Beijing Forestry University, 2017, 39(3): 32-37. DOI: 10.13332/j.1000-1522.20160322 |
[5] | CAO Feng, YANG Ling, GONG Shu-rong, ZHANG Lin, NIU Qiu-hong. Relationships between pathogenic bacterium and the endophytic bacteria isolated from Bursaphelenchus xylophilus.[J]. Journal of Beijing Forestry University, 2016, 38(9): 25-33. DOI: 10.13332/j.1000-1522.20160082 |
[6] | BEN Ai-ling, ZENG Fei-li, QIAO Xue-juan, ZHENG Jing-rong, HAN Zheng-min. Colonization and pathogenicity for American and Chinese bacterial strains carried by pine wood nematodes.[J]. Journal of Beijing Forestry University, 2013, 35(1): 83-87. |
[7] | HU Ching-yu, CHEN Jan-chang, WEI Chun-hung, CHEN Chaur-tzuhn. Using MODIS image data to estimate the terrestrial net primary productivity (NPP) of ecological zone in Taiwan.[J]. Journal of Beijing Forestry University, 2011, 33(4): 33-39. |
[8] | WANG Meng-chang, FAN Jun-feng, LIANG Jun, ZHOU Yong-xue, WANG Lei. Effects of canker pathogen on four antioxidase activities of poplar callus[J]. Journal of Beijing Forestry University, 2010, 32(2): 118-122. |
[9] | SUN Dong-mei, YANG Qian, SONG Jin-zhu. Study on inhibition pathogen of Cytospora chrysosperma by Trichoderma aureoviride metabolite[J]. Journal of Beijing Forestry University, 2006, 28(1): 76-79. |
[10] | ZHAO Bo-guang, LIANG Bo, ZHAO Lin-guo, XU Mei. Influence of pine wood nematode on production of phytotoxins of an accompanying pathogenic bacterial strain[J]. Journal of Beijing Forestry University, 2005, 27(6): 71-75. |