• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Shao Chenxi, Liang Yingmei, Lao Wenhao, Li Yunfan. Histological and physiopathology characteristics in the interaction of Gymnosporangium yamadae and Malus domestica leaves[J]. Journal of Beijing Forestry University, 2024, 46(11): 34-42. DOI: 10.12171/j.1000-1522.20230298
Citation: Shao Chenxi, Liang Yingmei, Lao Wenhao, Li Yunfan. Histological and physiopathology characteristics in the interaction of Gymnosporangium yamadae and Malus domestica leaves[J]. Journal of Beijing Forestry University, 2024, 46(11): 34-42. DOI: 10.12171/j.1000-1522.20230298

Histological and physiopathology characteristics in the interaction of Gymnosporangium yamadae and Malus domestica leaves

More Information
  • Received Date: October 30, 2023
  • Revised Date: December 17, 2023
  • Accepted Date: September 11, 2024
  • Available Online: September 12, 2024
  • Objective 

    The study aimed to determine the histopathological process of pathogen and investigate the physiological and metabolic response mechanisms of the host during specific infection of Gymnosporangium yamadae on apple (Malus domestica) leaves, and investigate the pathological mechanisms underlying the host-specific selection of the rust, so as to lay the groundwork for further research on pathogenetic molecular mechanisms of G. yamadae.

    Method 

    After artificially inoculating apple leaves with G. yamadae basidiospores, the infection structures of pathogen and cytology changes of the host were observed continuously using microtechnic; the contents of hydrogen peroxide, peroxidase (POD) and total phenol of infected apple leaves showed chlorotic flecks and at the pycnium and aecium stages were determined using TU-1810 UV-visible spectrophotometer.

    Result 

    G. yamadae basidiospores germinated and produced germ tubes after 6 hpi (hours past inoculation) and directly entered into apple leaf epidermal cells at 12 hpi, intercellular mycelia formed at 24 hpi and secondary mycelia with diaphragm were observed at 72 hpi. After 7 dpi (days past inoculation), intercellular mycelia or haustorial mother cells entered into host cells, resulting in the formation of monokaryotic haustoria. After 10 dpi, the pycnium and pycniosporophores were observed on the surface of apple leaves and the aecium and aeciospores were formed on the undersides of apple leaves at 60 d. The morphological structure of host cells did not visually change before infected leaves showing chlorotic flecks. However, the cytoplasmic staining of host cells lightened, and the morphology of organelles distorted when the host leaves showed chlorotic flecks (numbers of haustorium were formed and developed). In the spermogonial stage, host cell membranes and organelles became ablation. During the formation of aeciospores, host cells began to necrotic. The content of hydrogen peroxide decreased first and then increased slightly, while the activity of POD and the content of total phenol showed an increasing trend of different amplitude in infected apple leaves.

    Conclusion 

    The basidiospores of G. yamadae germinate to produce germ tubes and appressorium directly enters the host epidermal cells (0−5 dpi). The number of monokaryotic haustoria is formed by intercellular mycelia or haustorial mother cells to establish the biotrophic parasitic relationship with the host (5−10 dpi). Finally, the rust further develops to produce the spermatia and aeciospores (after 10 dpi). Susceptible reactions of host cells begin with haustorium entering mesophyll cells, and necrosis of host cells occurres in the aecial stage. Furthermore, the infection of G. yamadae results in the considerable accumulation of phenols in apple leaves, which might play a crucial role in maintaining low reactive oxygen species in the host.

  • [1]
    李保华, 王彩霞, 董向丽. 我国苹果主要病害研究进展与病害防治中的问题[J]. 植物保护, 2013, 39(5): 46−54. doi: 10.3969/j.issn.0529-1542.2013.05.007

    Li B H, Wang C X, Dong X L. Research progress in apple diseases and problems in the disease management in China[J]. Plant Protection, 2013, 39(5): 46−54. doi: 10.3969/j.issn.0529-1542.2013.05.007
    [2]
    Zhao P, Qi X H, Crous P W, et al. Gymnosporangium species on Malus: species delineation, diversity and host alternation[J]. Persoonia, 2020, 45(1): 68−100. doi: 10.3767/persoonia.2020.45.03
    [3]
    Tao S Q, Cao B, Kakishima M, et al. Species diversity, taxonomy, and phylogeny of Gymnosporangium in China[J]. Mycologia, 2020, 112(5): 941−973. doi: 10.1080/00275514.2020.1790272
    [4]
    Tao S Q, Cao B, Tian C M, et al. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum)[J]. BMC Genomics, 2017, 18(1): 651. doi: 10.1186/s12864-017-4059-x
    [5]
    Tao S Q, Cao B, Morin E, et al. Comparative transcriptomics of Gymnosporangium spp. teliospores reveals a conserved genetic program at this specific stage of the rust fungal life cycle[J]. BMC Genomics, 2019, 20(1): 723. doi: 10.1186/s12864-019-6099-x
    [6]
    Tao S Q, Auer L, Morin E, et al. Transcriptome analysis of apple leaves infected by the rust fungus Gymnosporangium yamadae at two sporulation stages[J]. Molecular Plant-Microbe Interaction, 2020, 33(3): 444−461. doi: 10.1094/MPMI-07-19-0208-R
    [7]
    翁涵, 刘霞, 陶思齐, 等. 山田胶锈菌和亚洲胶锈菌吸器的比较转录组分析[J]. 生物工程学报, 2022, 38(10): 3825−3843.

    Weng H, Liu X, Tao S Q, et al. Comparative transcriptomic analysis of the haustoria of Gymnosporangium yamadae and G. asiaticum[J]. Chinese Journal of Biotechnology, 2022, 38(10): 3825−3843.
    [8]
    董向丽, 李海燕, 孙丽娟, 等. 苹果锈病防治药剂筛选及施药适期研究[J]. 植物保护, 2013, 39(2): 174−179. doi: 10.3969/j.issn.0529-1542.2013.02.035

    Dong X L, Li H Y, Sun L J, et al. Control effects and optimal spraying time of fungicides to apple rust caused by Gymnosporangium yamadae[J]. Plant Protection, 2013, 39(2): 174−179. doi: 10.3969/j.issn.0529-1542.2013.02.035
    [9]
    Mims C W. Fine structure of basidiospores of the cedar-apple rust fungus Gymnosporangium juniperi-virginianae[J]. Botany, 1977, 55(9): 1057−1063.
    [10]
    Mims C W, Richardson E A. Ultrastructure of secondary spore formation in the rust Gymnosporangium juniperi-virginianae[J]. Mycologia, 1990, 82(2): 236−244. doi: 10.1080/00275514.1990.12025869
    [11]
    周世国. 梨胶锈菌性孢子和锈孢子阶段吸器的超微结构研究[J]. 真菌学报, 1992, 11(4): 289−293.

    Zhou S G. Ultrastructural studies on the haustorium of Gymnosporangium haraeanum in the pycnio-and aecio stage[J]. Mycologia, 1992, 11(4): 289−293.
    [12]
    黄丽丽, 康振生, 马远利. 胶锈菌在贴梗海棠上发育过程的电镜观察[J]. 西北农业学报, 1994, 3(4): 37−40.

    Huang L L, Kang Z S, Ma L Y. Electron microscopy observation of development of Gymnosporangium haraeanum on Chaenomeles speciose[J]. Acta agriculturae Boreali-occidentalis Sinica, 1994, 3(4): 37−40.
    [13]
    Lee S K, Kakishima M. Surface structures of peridial cells of Gymnosporangium and Roestelia (Uredinales)[J]. Mycoscience, 1999, 40(2): 121−131. doi: 10.1007/BF02464290
    [14]
    刘霞, 陶思齐, 翁涵, 等. 山田胶锈菌和亚洲胶锈菌吸器提取体系建立[J]. 菌物学报, 2019, 38(9): 1430−1439.

    Liu X, Tao S Q, Weng H, et al. Construction of haustorial isolation systems of Gymnosporangium yamadae and G. asiaticum[J]. Mycosystema, 2019, 38(9): 1430−1439.
    [15]
    赵鹏, 田呈明, 曹支敏. 杨树与栅锈菌互作中生理代谢变化[J]. 西北林学院学报, 2007, 22(4): 124−127. doi: 10.3969/j.issn.1001-7461.2007.04.031

    Zhao P, Tian C M, Cao Z M. Dynamic changes of physiological metabolism during the interaction of poplar and Melampsora larici-populina Kleb[J]. Journal of Northwest Forestry University, 2007, 22(4): 124−127. doi: 10.3969/j.issn.1001-7461.2007.04.031
    [16]
    王晨芳, 黄丽丽, 张宏昌, 等. 小麦–条锈菌互作过程中活性氧及保护酶系的变化研究[J]. 植物病理学报, 2009, 39(1): 52−60. doi: 10.3321/j.issn:0412-0914.2009.01.008

    Wang C F, Huang L L, Zhang H C, et al. Changes of reactive oxygen species and protective enzymes in the interaction of wheat and Puccinia striiformis f. sp. tritici[J]. Acta Phytopathologica Sinica, 2009, 39(1): 52−60. doi: 10.3321/j.issn:0412-0914.2009.01.008
    [17]
    Mishra R K, Mishra K K, Jaiswal R K, et al. Biochemical changes in pea (Pisum sativum L. ) infected by Uromyces fabae[J]. Indian Phytopathology, 2010, 63(2): 222−224.
    [18]
    Kalisz S, Oszmianski J, Wojdyo A. Increased content of phenolic compounds in pear leaves after infection by the pear rust pathogen[J]. Physiological and Molecular Plant Pathology, 2015, 91: 113−119. doi: 10.1016/j.pmpp.2015.07.001
    [19]
    Lu Y, Chen Q, Bu Y, et al. Flavonoid accumulation plays an important role in the rust resistance of Malus plant leaves[J]. Frontiers in Plant Science, 2017, 8: 1286. doi: 10.3389/fpls.2017.01286
    [20]
    Tang J, Dunshea F R, Suleria H A R. LC-ESI-QTOF/MS characterization of phenolic compounds from medicinal plants (hops and juniper berries) and their antioxidant activity[J]. Foods, 2019, 9(1): 7. doi: 10.3390/foods9010007
    [21]
    Shen N, Wang T F, Gan Q, et al. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity[J]. Food Chemistry, 2022, 383(30): 132531.
    [22]
    Sarkar D, Shetty K. Metabolic stimulation of plant phenolics for food preservation and health[J]. Annual Review of Food Science and Technology, 2014, 5: 395−413. doi: 10.1146/annurev-food-030713-092418
    [23]
    康振生. 植物病原真菌的超微结构[M]. 北京: 中国科学技术出版社, 1996: 1−92.

    Kang Z S. Ultrastructure of plant pathogenic fungi[M]. Beijing: China Science and Technology Press, 1996: 1−92.
    [24]
    Sergiev I, Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants[J]. Comptes Rendus de I’Academie Bulgare des Sciences, 1997, 51: 121−124. doi: 10.7202/305635ar
    [25]
    李江华, 王贵禧, 梁丽松, 等. 桐柏大枣气调贮藏期间几种酶活性变化[J]. 食品科学, 2006, 27(6): 234−237. doi: 10.3321/j.issn:1002-6630.2006.06.055

    Li J H, Wang G X, Liang L S, et al. Changes of some enzyme activity of ‘Tongbai jujube’ fruit during controlled atmosphere storage[J]. Food Science, 2006, 27(6): 234−237. doi: 10.3321/j.issn:1002-6630.2006.06.055
    [26]
    高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 211-222.

    Gao J F. Plant physiology experiment techniques[M]. Beijing: Higher Education Press, 2006: 211−222.
    [27]
    Mims C W, Richardson E A. Ultrastructure of appressorium development by basidiospore germlings of the rust fungus Gymnosporangium juniperi-virginianae[J]. Protoplasma, 1989, 148(2): 111−119.
    [28]
    赵杰, 赵元元, 李巧, 等. 小麦条锈菌转主寄主小檗 (Berberis germanensis) 的人工接种鉴定[J]. 植物病理学报, 2017, 47(2): 274−277.

    Zhao J, Zhao Y Y, Li Q, et al. Identification of Berberis germanensis as an alternate host of Puccinia striiformis f. sp. tritici under artificial conditions[J]. Acta Phytopathological Sinica, 2017, 47(2): 274−277.
    [29]
    Heath M C. Signaling between pathogenic rust fungi and resistant or susceptible host plants[J]. Annals of Botany, 1997, 80(6): 713−720. doi: 10.1006/anbo.1997.0507
    [30]
    Shao C X, Lao W H, Liang Y M. Reference genes selection of Gymnosporangium yamadae during the interaction with apple leaves[J]. Journal of Fungi, 2022, 8(8): 830. doi: 10.3390/jof8080830
    [31]
    Gold R E, Littlefield L J, Statler G D. Ultrastructure of the pycnial and aecial stages of Puccinia recondite[J]. Canadian Journal of Botany, 1979, 57(1): 74−86. doi: 10.1139/b79-015
    [32]
    Chethana K, Jayawardena R S, Chen Y J, et al. Appressorial interactions with host and their evolution[J]. Fungal Diversity, 2021, 110(1): 75−107. doi: 10.1007/s13225-021-00487-5
    [33]
    Harder D E, Chong J. Ultrastructure of spermatium ontogeny in Puccinia coronata avenae[J]. Canadian Journal of Botany, 1978, 56(4): 395−403. doi: 10.1139/b78-049
    [34]
    田呈明, 梁英梅, 康振生, 等. 杨树与栅锈菌互作的细胞学研究[J]. 林业科学, 2002, 38(3): 87−93.

    Tian C M, Liang Y M, Kang Z S, et al, Cytological studies on the host-pathogen relationship in the course of poplar leaf infection by Melampsora larici-populina[J]. Scientia Silvae Sinicae, 2002, 38(3): 87−93.
    [35]
    Figueroa M, Dodds P N, Henningsen E C. Evolution of virulence in rust fungi-multiple solutions to one problem[J]. Current Opinion in Plant Biology, 2020, 56: 20−27. doi: 10.1016/j.pbi.2020.02.007
    [36]
    庄华, 段婉露, 杨婷, 等. 小檗NPR1在小麦条锈菌侵染过程中的表达特征[J]. 植物病理学报, 2019, (49)6: 773−781.

    Zhuang H, Duan W L, Yang T, et al. Expression pattern of barberry NPR1 during the infection of Puccinia striiformis f. sp. tritici[J]. Acta Phytopathological Sinica, 2019, (49)6: 773−781.
    [37]
    Duplessis S, Lorrain C, Petre B, et al. Host adaptation and virulence in heteroecious rust fungi[J]. Annual Review of Phytopathology, 2021, 59(1): 403−422. doi: 10.1146/annurev-phyto-020620-121149
    [38]
    Waszczak C, Carmody M, Kangasjarvi J. Reactive oxygen species in plant signaling[J]. Annual Review of Plant Biology, 2018, 69: 209−236. doi: 10.1146/annurev-arplant-042817-040322
    [39]
    曾永三, 王振中. 豇豆与锈菌互作中的活性氧代谢研究[J]. 植物病理学报, 2004, 34(2): 142−153. doi: 10.3321/j.issn:0412-0914.2004.02.009

    Zeng Y S, Wang Z Z. Studies on the metabolism of active oxygen species during the interactions of cowpea and rust pathogen[J]. Acta Phytopathologica Sinica, 2004, 34(2): 142−153. doi: 10.3321/j.issn:0412-0914.2004.02.009
    [40]
    陈祖静, 曹支敏, 苟兴庆, 等. 杨树与松杨栅锈菌互作中寄主活性氧及抗性相关酶变化[J]. 林业科学, 2010, 46(8): 101−106. doi: 10.11707/j.1001-7488.20100815

    Chen Z J, Cao Z M, Gou X Q, et al. Dynamic changes of oxygen and related enzymes of the host in interaction between the poplar and Melampsora larici-populina[J]. Scientia Silvae Sinicae, 2010, 46(8): 101−106. doi: 10.11707/j.1001-7488.20100815
    [41]
    金莹, 孙爱东, 胡晓丹, 等. 苹果多酚的超声波提取及抗氧化作用研究[J]. 北京林业大学学报, 2007, 29(5): 137−141. doi: 10.3321/j.issn:1000-1522.2007.05.027

    Jin Y, Sun A D, Hu X D, et al. Ultrasonic extraction and antioxidant activities of apple polyphenols[J]. Journal of Beijing Forestry University, 2007, 29(5): 137−141. doi: 10.3321/j.issn:1000-1522.2007.05.027
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views (262) PDF downloads (32) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return