Citation: | Jiang Yibing, Song Xiaoshuang, Wang Zhanbin, Wang Liang, Deng Xun, Yu Wenjing. Diversity and community structure of endophytic fungi in Pinus sibirica needles with different lesion grades[J]. Journal of Beijing Forestry University, 2024, 46(11): 24-33. DOI: 10.12171/j.1000-1522.20230299 |
The diversity and flora structure of endophytic fungi in needles of Pinus sibirica with different lesion grades were studied to provide a theoretical basis for the microecological control of Siberian red pine diseases.
The fungi in needles of P. sibirica were sequenced by high-throughput sequencing method, α and β diversity were analyzed by Spearman correlation coefficient, and fungal trophic groups were predicted by FUNGuild database.
(1) α and β diversity analysis showed that the endophytic fungal diversity in asymptomatic needle leaves was higher, and the diversity of endophytic fungi was significantly different from infected needles. There was no significant difference in needle leaf diversity among different lesion grades, and the diversity of endophytic fungal communities of needle leaves was more similar in later stages of disease. (2) Fungal community LEfSe analyses showed the highest number of significant biomarkers (19) in the sample group of asymptomatic needle leaves. (3) Community structure analysis showed that, compared with the endophytic fungal community structure of infected needle leaves, the endophytic fungal community structure of asymptomatic needle leaves was more complex, in which Fusarium spp. was dominated; there were also differences in the fungal community structure of P. sibirica needle leaves with different lesion grades, in which 43.94% of dominant endophytic fungi in mildly infected needles was Penicillium spp., and as lesion grades deepened, the dominant endophytic fungus was Dothistroma spp. (4) The endophytic fungal trophic classification of diseased needle leaves changed significantly compared with asymptomatic needles. The relative abundance of endophytic fungal trophic classification in asymptomatic needle leaves was relatively uniform, and as the level of lesion increased, the endophytic fungal trophic classification in needle leaves shifted from pathological fungi to saprophytic fungi, and a large number of unknown functional fungal groups existed.
The diversity and community structure of endophytic fungi are significantly different (P < 0.05) in the needles of Pinus sibirica with different lesion grades. In healthy needles, endophytic bacteria have the highest diversity index and most indicator groups. However, with the increase of lesion grade, the nutrient type of endophytic fungi community changes from pathological type to saprophytic type.
[1] |
刘俊国, 宋辉, 刘桂丰, 等. 塔河蒙克山西伯利亚红松试验林高生长分析[J]. 森林工程, 2009, 25(1): 1−3. doi: 10.3969/j.issn.1001-005X.2009.01.001
Liu J G, Song H, Liu G F, et al. Height growth analysis in the experimental forest on Pinus sibirica Du Tour of Mengke Mountain in Tahe[J]. Forest Engineering, 2009, 25(1): 1−3. doi: 10.3969/j.issn.1001-005X.2009.01.001
|
[2] |
韦睿, 滕文华, 赵光仪, 等. 引种西伯利亚红松种源试验[J]. 东北林业大学学报, 2011, 39(1): 5−6. doi: 10.3969/j.issn.1000-5382.2011.01.002
Wei R, Teng W H, Zhao G Y, et al. Provenance trial of introduced Pinus sibirica[J]. Journal of Northeast Forestry University, 2011, 39(1): 5−6. doi: 10.3969/j.issn.1000-5382.2011.01.002
|
[3] |
赵光仪, 杨春田, 周长虹. 大兴安岭引种西伯利亚红松的必要和可能[J]. 林业科技, 1991(1): 1−4.
Zhao G Y, Yang C T, Zhou Z H. The necessity and possibilty of introduction Pine siberica in the great Xingan Mountains[J]. Forestry Science & Technology, 1991(1): 1−4.
|
[4] |
杨国庆, 时玉龙. 引进西伯利亚红松种子和接穗的检疫[J]. 植物检疫, 2003, 17(1): 36−38. doi: 10.3969/j.issn.1005-2755.2003.01.019
Yang G Q, Shi Y L. Quarantine of introduced Pinus sibirica seeds and scions[J]. Plant Quarantine, 2003, 17(1): 36−38. doi: 10.3969/j.issn.1005-2755.2003.01.019
|
[5] |
Souvik K, Satpal S, Chelliah J. Biotechnological potential of plant-associated endophytic fungi: hope versus hype[J]. Trends in Biotechnology, 2014, 32(6): 297−303. doi: 10.1016/j.tibtech.2014.03.009
|
[6] |
Tanaka M, Yoshimura M, Suto M, et al. Production of lepidimoide by an endophytic fungus from polysaccharide extracted from Abelmoschus sp.: identification of the product and the organism producing it[J]. Journal of Bioscience and Bioengineering, 2002, 93(6): 531−536. doi: 10.1016/S1389-1723(02)80233-X
|
[7] |
Khan A R, Ullah I, Waqas M, et al. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi[J]. Ecotoxicology and Environmental Safety, 2017, 136: 180−188. doi: 10.1016/j.ecoenv.2016.03.014
|
[8] |
宋薇薇, 朱辉, 余凤玉, 等. 植物内生菌及其对植物病害的防治作用综述[J]. 江苏农业科学, 2018, 46(6): 12−16.
Song W W, Zhu H, Yu F Y, et al. Plant endophytes and their control effects on plant diseases: a review[J]. Jiangsu Agricultural Sciences, 2018, 46(6): 12−16.
|
[9] |
隋丽, 万婷玉, 路杨, 等. 内生真菌对植物促生、抗逆作用研究进展[J]. 中国生物防治学报, 2021, 37(6): 1325−1331.
Sui L, Wan T Y, Lu Y, et al. Review of fungal endophytes on plant growth promotion and stress resistance[J]. Chinese Journal of Biological Control, 2021, 37(6): 1325−1331.
|
[10] |
王桥美, 严亮, 胡先奇, 等. 茶轮斑病对茶树叶片内生真菌群落结构的影响[J]. 微生物学报, 2021, 61(9): 2949−2961.
Wang Q M, Yan L, Hu X Q, et al. Effects of tea grey blight on the community structure of endophytic fungi in tea leaves[J]. Acta Microbiologica Sinica, 2021, 61(9): 2949−2961.
|
[11] |
牛燕芬, 李扬苹, 罗富成, 等. 植物内生真菌对寄主生长及抗逆性的增效机理研究进展[J]. 草原与草坪, 2015, 35(2): 91−96.
Niu Y F, Li Y P, Luo F C, et al. Promotion mechanisms on endophyte of plant to growth and stress tolerance of hosts plant[J]. Grassland and Turf, 2015, 35(2): 91−96.
|
[12] |
兰楠. 利用天南星科凝集素构建内生工程真菌及其抗虫防病效果研究[D]. 武汉: 华中农业大学, 2010.
Lan N. Construction of engineered endophythe with araceae lectin for inhibitingaphids and pathogen fungi [D]. Wuhan: Huazhong Agricultural University, 2010.
|
[13] |
刘翠华, 宋景和. 西伯利亚红松S_(2-2)型苗不同种源生长差异研究[J]. 林业科技, 2012, 37(5): 4−5. doi: 10.3969/j.issn.1001-9499.2012.05.003
Liu C H, Song J H. Studies on the growth differences of Pinus sibirica S_(2-2) seedlings from different seed sources[J]. Forestry Science & Technology, 2012, 37(5): 4−5. doi: 10.3969/j.issn.1001-9499.2012.05.003
|
[14] |
吴海荣, 吴海龙. 大海林林业局西伯利亚红松育苗相关问题的探讨[J]. 林业勘查设计, 2015(3): 47−48. doi: 10.3969/j.issn.1673-4505.2015.03.020
Wu H R, Wu H L. Discussion on related to Pinus sibilica seedlings in Dahailin Forestry Bureau[J]. Forest Investigation Design, 2015(3): 47−48. doi: 10.3969/j.issn.1673-4505.2015.03.020
|
[15] |
谢宪, 梁军, 朱彦鹏, 等. 赤松纯林不同松枯梢病病级针叶的内生真菌多样性及群落结构[J]. 林业科学, 2020, 56(9): 51−57. doi: 10.11707/j.1001-7488.20200906
Xie X, Liang J, Zhu Y P, et al. Diversity and community structure of endophytic fungi in the pure forest of Pinus densiflora infected by different incidences of Sphaeropsis sapinea[J]. Scientia Silvae Sinicae, 2020, 56(9): 51−57. doi: 10.11707/j.1001-7488.20200906
|
[16] |
Ferreira M C, Vieira M D L A, Zani C L, et al. Molecular phylogeny, diversity, symbiosis and discover of bioactive compounds of endophytic fungi associated with the medicinal Amazonian plant Carapa guianensis Aublet (Meliaceae)[J]. Biochemical Systematics and Ecology, 2015, 59: 36−44. doi: 10.1016/j.bse.2014.12.017
|
[17] |
刘学周, 赵智灵, 李绍宾, 等. 西洋参内生菌群落结构与多样性[J]. 微生物学报, 2015, 55(3): 330−340.
Liu X Z, Zhao Z L, Li S B, et al. The community structure and diversity of the endophytes in American ginseng[J]. Acta Microbiologica Sinica, 2015, 55(3): 330−340.
|
[18] |
Adams R I, Miletto M, Taylor J W, et al. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances[J]. The ISME Journal, 2013, 7(7): 1262−1273. doi: 10.1038/ismej.2013.28
|
[19] |
Zhang P, Guan P, Hao C, et al. Changes in assembly processes of soil microbial communities in forest-to-cropland conversion in Changbai Mountains, northeastern China[J]. The Science of the Total Environment, 2022, 818: 151738. doi: 10.1016/j.scitotenv.2021.151738
|
[20] |
Knight R, Caporaso J G, Kuczynski J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335−336. doi: 10.1038/nmeth.f.303
|
[21] |
Zhang X, Fu G, Xing S, et al. Structure and diversity of fungal communities in long-term copper-contaminated agricultural soil[J]. Science of the Total Environment, 2022, 806(Pt 3): 151302.
|
[22] |
Khan S, Chen N, Zhang C, et al. Soil fungal taxonomic diversity along an elevation gradient on the semi-arid Xinglong Mountain, Northwest China[J]. Archives Microbiology, 2020, 202(8): 2291−2302. doi: 10.1007/s00203-020-01948-2
|
[23] |
姚迪, 唐蕴哲, 张婧一, 等. 不同树龄杜仲内生真菌群落结构解析及优势菌群动态变化[J]. 中国微生态学杂志, 2023, 35(8): 885−893, 899.
Yao D, Tang Y Z, Zhang J Y, et al. Endophytic fungal community structure and dynamic changes of dominant flora in different ages of Eucommia ulmoides[J]. Chinese Journal of Microecology, 2023, 35(8): 885−893, 899.
|
[24] |
张丽娜, 朱天辉, 杨佐忠, 等. 灰斑病对山茶叶部真菌群落的影响[J]. 四川农业大学学报, 2011, 29(3): 378−385. doi: 10.3969/j.issn.1000-2650.2011.03.015
Zhang L N, Zhu T h, Yang Z Z, et al. Influence of Camellia gray spot disease on foliar fungal communities[J]. Journal of Sichuan Agricultural University, 2011, 29(3): 378−385. doi: 10.3969/j.issn.1000-2650.2011.03.015
|
[25] |
王铮, 邵鹏, 钟斯文, 等. 樟子松不同病斑等级针叶内生真菌多样性及群落结构[J]. 吉林农业大学学报, 2022, 2: 1-9.
Wang Z, Shao P, Zhong S W, et al. Diversity and community structure of endophytic fungi in different disease spot grades of Pinus sylvestris var. mongolica needles[J]. Journal of Jilin Agricultural University, 2022.
|
[26] |
钟雅婷, 邹东霞, 廖旺姣, 等. 轮斑病导致的桉树叶片内生真菌群落结构差异分析[J]. 中南林业科技大学学报, 2022, 42(4): 68−75.
Zhong Y T, Zou D X, Liao W J, et al. Differential analysis of community structure of endophytic fungi in the eucalyptus leaves infected by Coniella Eucalyptorum[J]. Journal of Central South University of Forestry & Technology, 2022, 42(4): 68−75.
|
[27] |
Arnold A E, Lutzoni F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?[J]. Ecology, 2007, 88(3): 541−549. doi: 10.1890/05-1459
|
[28] |
Tedersoo L, Bahram M, Põlme S, et al. Global diversity and geography of soil fungi[J]. Science, 2014, 346: 1078.
|
[29] |
Vandenkoornhuyse P, Quaiser A, Duhamel M, et al. The importance of the microbiome of the plant holobiont[J]. New Phytology, 2015, 206(4): 1196−1206. doi: 10.1111/nph.13312
|
[30] |
谢宪. 赤松针叶内生微生物群落结构对松枯梢病的影响[D]. 北京: 中国林业科学研究院, 2021.
Xie X. Effects of Endophytic Microbial Community Structure in Needles of Pinus densiflora on Pine Shoot Blight [D]. Beijing: Chinese Academy of Forestry, 2021.
|
[31] |
赵胜花, 秦强, 刘丽洁, 等. 松针红斑病研究进展分析[J]. 内蒙古林业, 2022(2): 34−35. doi: 10.3969/j.issn.1033-8221.2022.2.nmgly202202014
Zhao S H, Qin Q, Liu L J, et al. Analysis of progress in the study of Dothistroma pini[J]. Inner Mongolia Forestry, 2022(2): 34−35. doi: 10.3969/j.issn.1033-8221.2022.2.nmgly202202014
|
[32] |
郝泽婷. 淡紫拟青霉非还原型聚酮化合物合成基因簇的鉴定及表达分析[D]. 太原: 山西师范大学, 2018.
Hao Z T. The Identification and expression analysis of the non-reductive polyketone compound synthetic gene cluster of Purpureocillium lilacinum[D]. Taiyuan: Shanxi Normal University, 2018.
|
[33] |
肖顺, 张绍升, 刘国坤. 淡紫拟青霉对根结线虫的防治作用[J]. 福建农业大学学报, 2006, 35(5): 463−465.
Xiao S, Zhang S S, Liu G K. Control effect of Paecilomyces lilacinus on Meloidogyne spp.[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2006, 35(5): 463−465.
|
[34] |
乔月静. 轮作方式与杀线剂对甘薯产量及根际线虫、真菌、细菌群落的影响[D]. 北京: 中国农业大学, 2014.
Qiao Y J. Effect of cropping patterns and nematicides on yield and communities of nematodes, bacterial, fungi in the rhizosphere of sweet potato[D]. Beijing: China Agricultural University, 2014.
|
[35] |
Venche T, Gary C, Iben M T, et al. Sydowia polyspora associated with current season needle necrosis (CSNN) on true fir (Abies spp.)[J]. Fungal Biology, 2010, 114(7): 317−326.
Venche T, Gary C, Iben M T, et al. Sydowia polyspora associated with current season needle necrosis (CSNN) on true fir (Abies spp.)[J]. Fungal Biology, 2010, 114(7): 317−326.
|
[1] | Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073 |
[2] | Xing Yuhua, Zhang Dapeng, Li Siying, Wang Pei. Integration and simulation analysis of temperature gradient based 3T and resistance-based evapotranspiration model[J]. Journal of Beijing Forestry University, 2024, 46(4): 115-126. DOI: 10.12171/j.1000-1522.20230198 |
[3] | Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it[J]. Journal of Beijing Forestry University, 2023, 45(4): 136-146. DOI: 10.12171/j.1000-1522.20220506 |
[4] | Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213 |
[5] | Yu Yongzhu, Guan Cheng, Zhang Houjiang, Yao Xiaorui, Zhang Dian, Xin Zhenbo. Numerical simulation on the influence of wall wood column defects on the safety of ancient building[J]. Journal of Beijing Forestry University, 2022, 44(1): 132-145. DOI: 10.12171/j.1000-1522.20210341 |
[6] | Liu Fangni, Yin Hao, Zhou Xu. Numerical simulation study on the influence of greening between buildings on sunlight conditions of building in residential area[J]. Journal of Beijing Forestry University, 2020, 42(12): 101-114. DOI: 10.12171/j.1000-1522.20200039 |
[7] | Ou Zina, Zhang Houjiang, Guan Cheng. Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building[J]. Journal of Beijing Forestry University, 2020, 42(4): 142-154. DOI: 10.12171/j.1000-1522.20190328 |
[8] | LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117. |
[9] | HAO Yan-hua, ZHANG Xiang-xue, DING Xiao-kang, LIU Jiao. Analysis and measurement of ultrasonic acoustic emissions from the cavitation in xylem sap.[J]. Journal of Beijing Forestry University, 2012, 34(3): 36-40. |
[10] | YANG Xue, CHEN Guang-yuan, FENG Li-ning, LI Jian-rong. Investigation of airflow uniformity at air-exchange device in drying kiln by numerical simulation[J]. Journal of Beijing Forestry University, 2011, 33(4): 113-117. |
1. |
高斯远,曹广超,刁二龙,何启欣,程梦园,邱巡巡,程国,赵美亮. 盛行风作用下柴木达盆地典型多花柽柳灌丛资源岛特征. 水土保持通报. 2022(04): 293-300 .
![]() | |
2. |
董正武,李生宇,毛东雷,雷加强. 古尔班通古特沙漠西南缘柽柳沙包土壤粒度分布特征. 水土保持学报. 2021(04): 64-72+79 .
![]() | |
3. |
王永兵,李亚萍. 古尔班通古特沙漠南缘梭梭固沙林土壤粒度的分异规律. 水土保持通报. 2020(03): 75-80 .
![]() | |
4. |
杨异婷. 坡度及旅游干扰对土壤粒度特征的影响. 绿色科技. 2019(02): 12-16 .
![]() | |
5. |
张帅,丁国栋,高广磊,赵媛媛,于明含,包岩峰,王春媛. 风沙区公路防积沙的新型防护栏研究. 北京林业大学学报. 2018(02): 90-97 .
![]() | |
6. |
谭凤翥,王雪芹,王海峰,徐俊荣,袁鑫鑫. 柽柳灌丛沙堆及丘间地蚀积分布随背景植被变化的风洞实验. 干旱区地理. 2018(01): 56-65 .
![]() | |
7. |
安志山,张克存,谭立海,蔡迪文,张余. 论沙漠-绿洲过渡带的风沙防护效应. 干旱区研究. 2017(05): 1196-1202 .
![]() |