• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Feng Xiao, Tian Ling, Yin Qun, Jia Zhongkui. Response of growth and physiological characteristics of three Magnolia spp. seedlings to drought stress[J]. Journal of Beijing Forestry University, 2024, 46(9): 57-67. DOI: 10.12171/j.1000-1522.20230312
Citation: Feng Xiao, Tian Ling, Yin Qun, Jia Zhongkui. Response of growth and physiological characteristics of three Magnolia spp. seedlings to drought stress[J]. Journal of Beijing Forestry University, 2024, 46(9): 57-67. DOI: 10.12171/j.1000-1522.20230312

Response of growth and physiological characteristics of three Magnolia spp. seedlings to drought stress

More Information
  • Received Date: November 07, 2023
  • Revised Date: December 26, 2023
  • Accepted Date: June 27, 2024
  • Available Online: September 09, 2024
  • Objective 

    This study investigated the effects of drought stress on growth and physiological changes of Magnolia sieboldii, M. biondii, M. wufengensis ‘Jiaohong No.2’ to explore the influence mechanism of drought stress on three Magnolia spp. seedlings, evaluate the drought resistance of Magnolia spp. seedlings, and provide a basis for the introduction and promotion of seeds in arid areas.

    Method 

    The 2-year-old potted seedlings of 3 kinds of Magnolia spp. seedlings were used as experimental materials, 4 treatment levels (SWC80%−90% (CK), 60%−70% (T1), 40%−50% (T2), 20%−30% (T3)) were set, and the changes of 19 indexes, including growth and physiology were analyzed after 50 d of drought stress.

    Result 

    (1) Moderate and severe drought stress (T2, T3) significantly decreased the ground diameter increment and biomass increment of 3 kinds of Magnolia spp. seedlings, and significantly increased the root-shoot ratio of M. biondii and M. wufengensis ‘Jiaohong No.2’(P < 0.05). Under severe drought stress (T3), the increment of plant height and biomass of M. wufengensis ‘Jiaohong No.2’ was significantly higher than that of M. biondii (P < 0.05). (2) Compared with CK, T1 increased the chlorophyll contents of M. wufengensis ‘Jiaohong No.2’, and the content of chlorophyll in the 3 kinds of Magnolia spp. seedlings gradually decreased at other drought levels. With the intensification of drought, the content of malondialdehyde, soluble sugar, soluble protein and the activity of superoxide dismutase, catalase of the 3 kinds of Magnolia spp. seedlings gradually increased, and T3 and CK showed significant differences. Proline content of M. biondii decreased first and then increased, and the proline content of M. sieboldii and M. wufengensis ‘Jiaohong No.2’ showed an increasing trend with the intensification of drought. The peroxidase activity of 3 kinds of Magnolia spp. seedlings varied with the intensities of drought. The peroxidase activity of M. sieboldii was the highest at T2, and those of M. biondii and M. wufengensis ‘Jiaohong No.2’ were the highest at T3. (3) The net photosynthetic rate, intercellular CO2 concentration and transpiration rate of M. wufengensis ‘Jiaohong No.2’ were the highest at T1, which were 2.67%, 1.94% and 3.09% higher than CK, respectively. The stomatal conductivity and water use efficiency decreased gradually with the worsening of drought. Severe drought stress (T3) significantly reduced the net photosynthetic rate, intercellular CO2 concentration, transpiration rate, stomatal conductivity and water use efficiency (P < 0.05) of M. sieboldii and M. biondii. (4) The analysis of membership function showed that the drought resistance of 3 kinds of Magnolia spp. seedlings was M. sieboldii > M. wufengensis ‘Jiaohong No.2’ > M. biondii.

    Conclusion 

    Drought stress affects the growth and physiological activities of the 3 kinds of Magnolia spp. seedlings, damages the leaf cell structure and slows plant growth, but the plants could resist drought and maintain their normal physiological metabolic functions by adjusting their own osmoregulatory substance content and protective enzyme activities. Based on the indicators, the drought resistance of M. sieboldii is the strongest, and the drought resistance of M. biondii is the weakest.

  • [1]
    张强, 姚玉璧, 李耀辉, 等. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 2020, 78(3): 500−521. doi: 10.11676/qxxb2020.032

    Zhang Q, Yao Y B, Li Y H, et al. Progress and prospect on the study of causes and variation regularity of droughts in China[J]. Acta Meteorologica Sinica, 2020, 78(3): 500−521. doi: 10.11676/qxxb2020.032
    [2]
    Liu J, Zhang R, Zhang G, et al. Effects of soil drought on photosynthetic traits and antioxidant enzyme activities in Hippophae rhamnoides seedlings[J]. Journal of Forestry Research, 2017, 28(2): 9.
    [3]
    马福林, 马玉花. 干旱胁迫对植物的影响及植物的响应机制[J]. 宁夏大学学报(自然科学版), 2022, 43(4): 391−399.

    Ma F L, Ma Y H. Effects of drought stress on plants and plant response mechanisms[J]. Journal of Ningxia University (Natural Science Edition), 2022, 43(4): 391−399.
    [4]
    Sun C H, Li X H, Hu Y L, et al. Proline, sugars, and antioxidant enzymes respond to drought stress in the leaves of strawberry plants[J]. Korean Journal of Horticultural Science & Technology, 2015, 33(5): 625−632.
    [5]
    Kumar M, Patel M K, Kumar N, et al. Metabolomics and molecular approaches reveal drought stress tolerance in plants[J]. International Journal of Molecular Sciences, 2021, 22(17): 9108. doi: 10.3390/ijms22179108
    [6]
    Banik P, Zeng W P, Tai H, et al. Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes[J]. Environmental and Experimental Botany, 2016, 126: 76−89. doi: 10.1016/j.envexpbot.2016.01.008
    [7]
    王志杰. 天女花生物学特性观察初报[J]. 河北林学院学报, 1996(2): 176−178.

    Wang Z J. Observations on biological characteristics of Magnolia sieboldll[J]. Journal of Heibei Foerstry College, 1996(2): 176−178.
    [8]
    郭乐, 康永祥, 邢振杰, 等. 望春玉兰种质资源遗传多样性ISSR分析[J]. 植物研究, 2014, 34(4): 465−473. doi: 10.7525/j.issn.1673-5102.2014.04.007

    Guo L, Kang Y X, Xing Z J, et al. Genetic diversity of Mangolia biondii assessed by ISSR polymorphisms[J]. Bulletin of Botanical Research, 2014, 34(4): 465−473. doi: 10.7525/j.issn.1673-5102.2014.04.007
    [9]
    马履一, 王罗荣, 贺随超, 等. 中国木兰科木兰属一新变种(英文)[J]. 植物研究, 2006(5): 516−519. doi: 10.3969/j.issn.1673-5102.2006.05.002

    Ma L Y, Wang L R, He S C, et al. A new variety of Magnolia (Magnoliaceae) from Hubei, China[J]. Bulletin of Botanical Research, 2006(5): 516−519. doi: 10.3969/j.issn.1673-5102.2006.05.002
    [10]
    肖爱华. 红花玉兰花被片形态建成及调控机理研究[D]. 北京: 北京林业大学, 2019.

    Xiao A H. Study on the morphogenesis and regulation mechanism of the perianth flakes of Magnolia wufengensis[D]. Beijing: Beijing Forestry University, 2019.
    [11]
    桑子阳, 马履一, 陈发菊, 等. 五峰红花玉兰种质资源保护现状与开发利用对策[J]. 湖北农业科学, 2011, 50(8): 1564−1567. doi: 10.3969/j.issn.0439-8114.2011.08.017

    Sang Z Y, Ma L Y, Chen F J. et al. Protection status and utilization countermeasure of germplasm resources of the Magnolia wufengensis in Wufeng County[J]. Hubei Agricultural Sciences, 2011, 50(8): 1564−1567. doi: 10.3969/j.issn.0439-8114.2011.08.017
    [12]
    蔡锡安, 孙谷畴, 赵平, 等. 土壤水分对单性木兰幼苗光合特性的影响[J]. 热带亚热带植物学报, 2004, 12(3): 207−212. doi: 10.3969/j.issn.1005-3395.2004.03.003

    Cai X A, Sun G C, Zhao P, et al. The effects of soil water content on photosynthesis in leaves of Kmeria septentrionalis seedlings[J]. Journal of Tropical and Subtropical Botany, 2004, 12(3): 207−212. doi: 10.3969/j.issn.1005-3395.2004.03.003
    [13]
    马斌, 张娅, 吴毅, 等. 干旱胁迫对4种木兰科树种生理特性的影响[J]. 中南林业科技大学学报, 2020, 40(11): 93−99.

    Ma B, Zhang Y, Wu Y, et al. Effects of drought stress on physiological characteristics of four Magnoliaceae species[J]. Journal of Central South University of Forestry & Technology, 2020, 40(11): 93−99.
    [14]
    张梦飞, 李爽, 李运盛, 等. 9种绿化树种幼苗抗旱性评价[J]. 中国农学通报, 2022, 38(20): 38−46. doi: 10.11924/j.issn.1000-6850.casb2022-0052

    Zhang M F, Li S, Li Y S, et al. Evaluation on the drought resistance of seedlings of nine greening tree species[J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 38−46. doi: 10.11924/j.issn.1000-6850.casb2022-0052
    [15]
    张庆宝. 木兰属植物资源收集和天目木兰种苗特性与抗性研究[D]. 杭州: 浙江林学院, 2009.

    Zhang Q B. The resource collection of the Magnolia species and the study on the seedings characteristics and adaption of M. amoena[D]. Hangzhou: Zhejiang Forestry Uuniversity, 2009.
    [16]
    赵秀婷, 王延双, 段劼, 等. 盐胁迫对红花玉兰嫁接苗生长和光合特性的影响[J]. 林业科学, 2021, 57(4): 43−53.

    Zhao X T, Wang Y S, Duan J, et al. Effects of salt stress on growth and photosynthetic characteristics of Magnolia wufengensis grafted seedlings[J]. Scientia Silvae Sinicae, 2021, 57(4): 43−53.
    [17]
    徐飞, 郭卫华, 徐伟红, 等. 刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应[J]. 北京林业大学学报, 2010, 32(1): 24−30.

    Xu F, Guo W H, Xu W H, et al. Effects of water stress on morphology biomass allocation and photosynthesis in Robinia pseudoacacia seedlings[J]. Journal of Beijing Forestry University, 2010, 32(1): 24−30.
    [18]
    Oskuei B K, Bandehagh A, Farajzadeh D, et al. Morphological, biochemical, and physiological responses of canola cultivars to drought stress[J]. International Journal of Environmental Science and Technology, 2023, 20(12): 13551−13560. doi: 10.1007/s13762-023-04928-3
    [19]
    谢乾瑾, 夏新莉, 刘超, 等. 水分胁迫对不同种源蒙古莸光合特性与生长的影响[J]. 林业科学研究, 2010, 23(4): 567−573.

    Xie Q J, Xia X L, Liu C, et al. Effects of water stress on photosynthetic and growth characteristics of different Caryopteris mongholica provenances[J]. Forest Research, 2010, 23(4): 567−573.
    [20]
    张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响[J]. 草业学报, 2019, 28(5): 79−89. doi: 10.11686/cyxb2018314

    Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphplogy and anatomical strecture of Medicago sativa varieties with differing drought-tolerance[J]. Acta Prataculturae Sinica, 2019, 28(5): 79−89. doi: 10.11686/cyxb2018314
    [21]
    邵畅畅, 罗仙英, 丁贵杰, 等. 干旱对马尾松茎叶水力特征及解剖特性的影响[J]. 植物生理学报, 2022, 58(5): 937−945.

    Shao C C, Luo X Y, Ding G J, et al. Effffects of drought on hydraulic and anatomical characteristics of stem and leaf in Pinus massoniana[J]. Plant Physiology Journal, 2022, 58(5): 937−945.
    [22]
    Levitt J. Response of plants to environmental stress. vol 1[J]. Journal of Range Management, 1973, 1(5): 3642−3645.
    [23]
    何小三. 不同油茶品种对干旱胁迫的响应机制[D]. 南京: 南京林业大学, 2019.

    He X S. Camellia oleifera’s response mechanism to drought stress[D]. Nanjing: Nanjing Forestry University, 2019.
    [24]
    王宇超, 王得祥, 彭少兵, 等. 干旱胁迫对木本滨藜生理特性的影响[J]. 林业科学, 2010, 46(1): 61−67. doi: 10.11707/j.1001-7488.20100110

    Wang Y C, Wang D X, Peng S B, et al. Effects of drought stress on physiological characteristics of woody saltbush[J]. Scientia Silvae Sinicae, 2010, 46(1): 61−67. doi: 10.11707/j.1001-7488.20100110
    [25]
    Gill S S, Anjum N A, Gill R, et al. Superoxide dismutase-mentor of abiotic stress tolerance in crop plants[J]. Environmental Science and Pollution Research, 2015, 22(14): 10375−10394. doi: 10.1007/s11356-015-4532-5
    [26]
    Zwetsloot M J, Bauerle T L. Repetitive seasonal drought causes substantial species: pecific shifts in fine-root longevity and spatio-temporal production patterns in mature temperate forest trees[J]. New Phytologist, 2021, 231(3): 974−986. doi: 10.1111/nph.17432
    [27]
    Olmo M, Lopez-Lglesias B, Villar R. Drought changes the structure and elemental composition of very fine roots in seedlings of ten woody tree species: implications for a drier climate[J]. Plant and Soil, 2014, 384(1/2): 113−129.
    [28]
    Zhu L, Li A, Sun H, et al. The effect of exogenous melatonin on root growth and lifespan and seed cotton yield under drought stress[J]. Industrial Crops and Products, 2023, 204: 117344. doi: 10.1016/j.indcrop.2023.117344
    [29]
    周自云, 梁宗锁, 刘启明. 不同土壤水分条件对酸枣生物量与耗水特性的影响[J]. 西北农林科技大学学报, 2010, 38(8): 90−96.

    Zhou Z Y, Liang Z S, Liu Q M. Effects of soil water content on biomass and water consumption characteristics of wild jujube (Zizyphus jujuba Mill var. spinosus (Bunge) Hu ex H. F. Chou)[J]. Journal of Northwest A&F University, 2010, 38(8): 90−96.
    [30]
    侯立伟, 鲁绍伟, 李少宁, 等. 城市绿化灌木耐旱性评价及灌溉制度研究进展[J]. 世界林业研究, 2023, 36(1): 45−51.

    Hou L W, Lu S W, Li S N, et al. Review of research on drought tolerance evaluation and irrigation regime of urban greening shrubs[J]. World Forestry Research, 2023, 36(1): 45−51.
    [31]
    喻晓丽, 邸雪颖, 宋丽萍. 水分胁迫对火炬树幼苗生长和生理特性的影响[J]. 林业科学, 2007, 43(11): 57−61. doi: 10.11707/j.1001-7488.20071110

    Yu X L, Di X Y, Song L P. Effects of water stress on the growth and eco-physiology of seedlings of the Rhus typhina[J]. Scientia Silvae Sinicae, 2007, 43(11): 57−61. doi: 10.11707/j.1001-7488.20071110
    [32]
    彭远英, 颜红海, 郭来春, 等. 燕麦属不同倍性种质资源抗旱性状评价及筛选[J]. 生态学报, 2011, 31(9): 2478−2491.

    Peng Y Y, Yan H H, Guo L C, et al. Evaluation and selectionon drought-resistance of germplasm resources of Avena species with different types of ploidy[J]. Acta Ecologica Sinica, 2011, 31(9): 2478−2491.
    [33]
    Toscano S, Ferrante A, Tribuloto A, et al. Leaf physiological and anatomical responses of Lantana and Ligustrum species under different water availability[J]. Plant Physiology and Biochemistry, 2018, 127: 380−392. doi: 10.1016/j.plaphy.2018.04.008
    [34]
    梁建萍, 贾小云, 刘亚令, 等. 干旱胁迫对蒙古黄芪生长及根部次生代谢物含量的影响[J]. 生态学报, 2016, 36(14): 4415−4422.

    Liang J P, Jia X Y, Liu Y L, et al. Effects of drought stress on seedling growth and accumulation of secondary metabolites in the roots of Astragalus membranaceus var. mongholicus[J]. Acta Ecologica Sinica, 2016, 36(14): 4415−4422.
    [35]
    吴永波, 叶波. 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J]. 生态学报, 2016, 36(2): 403−410.

    Wu Y B, Ye B. Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings[J]. Acta Ecologica Sinica, 2016, 36(2): 403−410.
    [36]
    Xiong S F, Wang Y D, Chen Y C, et al. Effects of drought stress and rehydration on physiological and biochemical properties of four oak species in China[J]. Plants, 2022, 11(5): 679. doi: 10.3390/plants11050679
    [37]
    张婵, 洪希群, 吴承祯, 等. 干旱胁迫对闽北几种乡土树种耗水及光合特性的影响[J]. 应用与环境生物学报, 2023, 29(1): 212−219.

    Zhang C, Hong X Q, Wu C Z, et al. Effects of drought stress on water consumption and photosynthetic characteristics of native tree species in northern Fujian[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(1): 212−219.
    [38]
    朱婧, 聂水, 刘思, 等. 4种木本园林植物水分胁迫生理响应及耐旱性评价[J]. 分子植物育种, 2023, 21(23): 7867−7883.

    Zhu J, Nie S, Liu S, et al. Physiological response and drought tolerance evaluation of seedlings of four woody garden plants under water stress[J]. Molecular Plant Breeding, 2023, 21(23): 7867−7883.
    [39]
    杨虎臣. 干旱胁迫对幼苗期甜菜脯氨酸(Pro)代谢通路的影响[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Yang H C. The effect of drought stress influence in the proline metabolism pathways of seedling period of sugay beet[D]. Harbin: Harbin Institute of Technology, 2016.
    [40]
    周玲, 王乃江. 干旱胁迫下文冠果幼苗叶片的生理响应[J]. 西北林学院学报, 2012, 27(3): 7−11. doi: 10.3969/j.issn.1001-7461.2012.03.02

    Zhou L, Wang N J. Physiological responses of Xanthoceras sorbifolia seedling leaves under soil drought stress[J]. Journal of Northwest Forestry University, 2012, 27(3): 7−11. doi: 10.3969/j.issn.1001-7461.2012.03.02
    [41]
    颜淑云, 周志宇, 邹丽娜, 等. 干旱胁迫对紫穗槐幼苗生理生化特性的影响[J]. 干旱区研究, 2011, 28(1): 139−145. doi: 10.3724/SP.J.1148.2011.00139

    Yan S Y, Zhou Z Y, Zou L N, et al. Effect of drought stress on physiological and biochemical properties of Amorpha fruticosa seedlings[J]. Arid Zone Research, 2011, 28(1): 139−145. doi: 10.3724/SP.J.1148.2011.00139
    [42]
    郭春爱, 刘芳, 许晓明. 叶绿素b缺失与植物的光合作用[J]. 植物生理学通讯, 2006, 42(5): 967−973.

    Guo C A, Liu F, Xu X M. Chlorophyll-b deficient and photosynthesis in plants[J]. Plant Physiology Journal, 2006, 42(5): 967−973.
    [43]
    Yamaguchi-Shinozaki S K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007, 58(2): 221.
    [44]
    Chen W, Feng C, Guo W, et al. Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis, and osmotic adjustment of cottonplants[J]. Photosynthetica, 2011, 49(3): 417−425.
  • Cited by

    Periodical cited type(4)

    1. 闫宇,邓焯,李斌,赵天忠. 基于Landsat 8数据的人工林地上生物量估测模型研究. 西北林学院学报. 2024(05): 53-60+77 .
    2. 张双印,赵保成,赵登忠,周伟,任斐鹏,付重庆,郑航,郑学东,徐平. 长江源草地生物量空间分布及分配初步研究. 长江科学院院报. 2024(11): 196-202 .
    3. 崔立晗,郑盛,徐敏. 内蒙古森林和草地地上生物量遥感反演. 地理科学. 2024(12): 2215-2224 .
    4. 姬永杰,徐昆鹏,张王菲,史建敏,张甫香. 不同波长极化SAR数据水云模型森林生物量反演对比分析. 北京林业大学学报. 2023(02): 24-33 . 本站查看

    Other cited types(5)

Catalog

    Article views (253) PDF downloads (20) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return