• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Yuxiang, Wang Lei, Ren Ninghong, You Chongjuan. Community structure of endophytic fungi in asymptomatic and symptomatic Pinus sylvestris var. mongolica infected by diplodia tip blight[J]. Journal of Beijing Forestry University, 2024, 46(9): 119-131. DOI: 10.12171/j.1000-1522.20230350
Citation: Liu Yuxiang, Wang Lei, Ren Ninghong, You Chongjuan. Community structure of endophytic fungi in asymptomatic and symptomatic Pinus sylvestris var. mongolica infected by diplodia tip blight[J]. Journal of Beijing Forestry University, 2024, 46(9): 119-131. DOI: 10.12171/j.1000-1522.20230350

Community structure of endophytic fungi in asymptomatic and symptomatic Pinus sylvestris var. mongolica infected by diplodia tip blight

More Information
  • Received Date: November 30, 2023
  • Revised Date: May 02, 2024
  • Available Online: August 08, 2024
  • Objective 

    Diplodia tip blight of Mongolian pine is widely distributed in Honghuaerji, Inner Mongolia of northern China, causing severe damage on natural Mongolian pine (Pinus sylvestris var. mongolica). Our study analyzed the diversity and community structure of endophytic fungi in different parts of asymptomatic and symptomatic Mongolian pine infected by Diplodia sapinea, laying a research foundation for the subsequent screening of effective endophytic antagonistic strains and the control of diplodia tip blight.

    Method 

    Using culture-based and high-throughput sequencing techniques, the diversity and structure of endophytic fungal communities in different tissues (needles, twigs and phloem) of asymptomatic and symptomatic Mongolian pine were compared and analyzed, and endophytic fungi with significant differences in abundance at twigs were screened.

    Result 

    (1) 360 and 233 taxa of endophytic fungi were isolated from symptomatic and asymptomatic Mongolian pine, respectively. D. sapinea was isolated from both asymptomatic and symptomatic Mongolian pine, with the highest isolation rate. In addition, Hormonema sp. had a higher isolation rate on asymptomatic Mongolian pine, but a lower isolation rate on symptomatic Mongolian pine, and it was only isolated from the diseased twigs. (2) The amplicon sequencing results showed that there were no significant differences of α diversity of endophytic fungi between symptomatic and asymptomatic Mongolian pine, but beta diversity, community composition and structure of endophytic fungi were various according to different tissues from symptomatic and asymptomatic Mongolian pine. (3) Linear discriminant analysis effect size (LEfSe) analysis of amplicon revealed that the fungus Diplodia sp. was significantly enriched in the twigs of symptomatic Mongolian pine, while Hormonema sp. was significantly enriched in the twigs of asymptomatic Mongolian pine. (4) Fungal trophic classification confirmed that the relative abundance of saprophytic fungi was highest in all three parts of asymptomatic Mongolian pine, while the relative abundance of plant pathogens in the phloem of symptomatic Mongolian pine was significantly increased.

    Conclusion 

    There are no significant differences in the diversity of endophytic fungi between symptomatic and asymptomatic Mongolian pine, but there are significant differences in the community structure of endophytic fungi in different tissues. In the future study, antagonistic experiments will be conducted to evaluate the potential of fungi Hormonema sp. from asymptomatic Mongolian pine as biocontrol agents.

  • [1]
    康宏樟, 朱教君, 许美玲. 科尔沁沙地樟子松人工林幼树水分生理生态特性[J]. 干旱区研究, 2007, 24(1): 15−22.

    Kang H Z, Zhu J J, Xu M L. Study on water physiological properties of the artificially-planned saplings of Pinus sylvestris var. mongolica in the Horqin Sandland[J]. Arid Zone Research, 2007, 24(1): 15−22.
    [2]
    郑国强. 樟子松枯梢病侵染与流行规律的研究[D]. 哈尔滨: 东北林业大学, 2001.

    Zheng G Q. Infection and epidemiology of shoot blight of Pinus sylvestris var. mongolica[D]. Harbin: Northeast Forestry University, 2001.
    [3]
    Brodde L, Adamson K, Camarero J J, et al. Diplodia tip blight on its way to the North: drivers of disease emergence in northern Europe[J/OL]. Frontiers in Plant Science, 2019, 9: 1818[2019−01−09]. https://doi.org/10.3389/fpls.2018.01818.
    [4]
    Oliva J, Ridley M, Redondo M A, et al. Competitive exclusion amongst endophytes determines shoot blight severity on pine[J]. Functional Ecology, 2021, 35(1): 239−254. doi: 10.1111/1365-2435.13692
    [5]
    Blumenstein K, Bußkamp J, Langer G J, et al. Sphaeropsis sapinea and associated endophytes in scots pine: interactions and effect on the host under variable water content[J/OL]. Frontiers in Forests and Global Change, 2021, 4: 655769[2021−05−24]. https://doi.org/10.3389/ffgc.2021.655769.
    [6]
    Phillips A J L, Alves A, Abdollahzadeh J, et al. The Botryosphaeriaceae: genera and species known from culture[J]. Studies in Mycology, 2013, 76(1): 151−167.
    [7]
    项存悌, 原树忠, 孟繁荣, 等. 樟子松枯梢病的研究[J]. 东北林学院学报, 1981, 6(2): 1−10, 129.

    Xiang C T, Yuan S Z, Meng F R, et al. Studies on the diplodia shoot-blight of Pinus sylvestris var. mongolica[J]. Journal of Northeast Forestry University, 1981, 6(2): 1−10, 129.
    [8]
    黄敬林, 李耀民, 杨传波, 等. 樟子松枯梢病的侵染规律[J]. 东北林业大学学报, 2002, 30(3): 13−16. doi: 10.3969/j.issn.1000-5382.2002.03.004

    Huang J L, Li Y M, Yang C B, et al. Infection law of shoot blight of Pinus sylvestris var. mongolica[J]. Journal of Northeast Forestry University, 2002, 30(3): 13−16. doi: 10.3969/j.issn.1000-5382.2002.03.004
    [9]
    庞丽杰. 樟子松枯梢病流行规律和测报技术的研究[D]. 哈尔滨: 东北林业大学, 2004.

    Pang L J. Study on the epidemiology and forecast technology of Shoot Blight of Pinus sylvestris var. mongolica[D]. Harbin: Northeast Forestry University, 2004.
    [10]
    Smith H, Wingfield M J, Crous P W, et al. Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa[J]. South African Journal of Botany, 1996, 62(2): 86−88. doi: 10.1016/S0254-6299(15)30596-2
    [11]
    Flowers J, Nuckles E, Hartman J, et al. Latent infection of Austrian and Scots pine tissues by Sphaeropsis sapinea[J]. Plant Disease, 2001, 85(10): 1107−1112. doi: 10.1094/PDIS.2001.85.10.1107
    [12]
    Terhonen E, Babalola J, Kasanen, R, et al. Sphaeropsis sapinea found as symptomless endophyte in Finland[J/OL]. Silva Fennica, 2021, 55(1): 13[2021−01−26]. https://doi.org/10.14214/sf.10420.
    [13]
    Blumenstein K, Buβkamp J, Langer G J, et al. The Diplodia tip blight pathogen Sphaeropsis sapinea is the most common fungus in Scots Pines’ mycobiome, irrespective of health status: a case study from Germany[J/OL]. Journal of Fungi, 2021, 7(8): 607[2021−07−27]. https://doi.org/10.3390/jof7080607.
    [14]
    Sherwood P, Villari C, Capretti P, et al. Mechanisms of induced susceptibility to diplodia tip blight in drought-stressed Austrian pine[J]. Tree Physiology, 2015, 35: 549–562.
    [15]
    Bußkamp J, Langer G J, Langer E J. Sphaeropsis sapinea and fungal endophyte diversity in twigs of Scots pine (Pinus sylvestris) in Germany[J]. Mycological Progress, 2020, 19(9): 985−999. doi: 10.1007/s11557-020-01617-0
    [16]
    常忠连. 辽西地区樟子松固沙林衰退枯死原因及改造方式研究[D]. 哈尔滨: 东北林业大学, 2004.

    Chang Z L. Study on reason of the death and reconstruction techniques of Pinus sylvestris var. mongolica plantation for sandy-fixation in west of Liaoning Province[D]. Harbin: Northeast Forestry University, 2004.
    [17]
    杨传波, 黄敬林, 李宝年, 等. 樟子松树栖真菌群落物种多样性及其与病害的关系[J]. 东北林业大学学报, 2004, 32(5): 94−96. doi: 10.3969/j.issn.1000-5382.2004.05.034

    Yang C B, Huang J L, Li B N, et al. The relationship between the species diversity of dendrocola mycoflora on Pinus sylvestris var. mongolica and disease[J]. Journal of Northeast Forestry University, 2004, 32(5): 94−96. doi: 10.3969/j.issn.1000-5382.2004.05.034
    [18]
    周秀华. 樟子松树栖真菌生物相的研究[D]. 哈尔滨: 东北林业大学, 2004.

    Zhou X H. The studies on the Pinus sylvestris var. mongolica of sudendrocola mycoflora[D]. Harbin: Northeast Forestry University, 2004.
    [19]
    周秀华. 樟子松干栖真菌类群的研究[J]. 安徽农业科学, 2011, 39(5): 2784−2785. doi: 10.3969/j.issn.0517-6611.2011.05.096

    Zhou X H. Study on groups of fungi on boles of Pinus sylvestris var. mongolica[J]. AnHui Agricultural Science, 2011, 39(5): 2784−2785. doi: 10.3969/j.issn.0517-6611.2011.05.096
    [20]
    鞠洪波. 樟子松枯梢病微生态控制研究[D]. 哈尔滨: 东北林业大学, 2004.

    Ju H B. The Research of micro-ecological control on shoot blight of Pinus sylvestris var. mongolica[D]. Harbin: Northeast Forestry University, 2004.
    [21]
    谢宪, 梁军, 朱彦鹏, 等. 赤松纯林不同松枯梢病病级针叶的内生真菌多样性及群落结构[J]. 林业科学, 2020, 56(9): 51−57. doi: 10.11707/j.1001-7488.20200906

    Xie X, Liang J, Zhu Y P, et al. Diversity and community structure of endophytic fungi in the pure forest of Pinus densiflora infected by different incidences of Sphaeropsis sapinea[J]. Scientia Silvae Sinicae, 2020, 56(9): 51−57. doi: 10.11707/j.1001-7488.20200906
    [22]
    李宝年, 徐树辉, 杨传波, 等. 樟子松枯梢病拮抗真菌的筛选[J]. 东北林业大学学报, 2004, 32(5): 97−99. doi: 10.3969/j.issn.1000-5382.2004.05.035

    Li B N, Xu S H, Yang C B, et al. Screening of antagonistic fungus for Pinus sylvestris var. mongolica shoot blight[J]. Journal of Northeast Forestry University, 2004, 32(5): 97−99. doi: 10.3969/j.issn.1000-5382.2004.05.035
    [23]
    周秀华, 崔磊. 螺卷毛壳对樟子松枯梢病病原菌的影响[J]. 长春大学学报, 2009, 19(10): 69−70,74.

    Zhou X H, Cui L. Effect of Chaetomium cochliodes on the pathogen of Sphaeropsis sapinea blight of Pinus sylvestris var. mongolica[J]. Journal of Changchun University, 2009, 19(10): 69−70,74.
    [24]
    邓勋, 宋瑞清, 宋小双, 等. 高效木霉菌株对樟子松枯梢病的抑菌机理[J]. 中南林业科技大学学报, 2012, 32(11): 21−27.

    Deng X, Song R Q, Song X S, et al. High efficient Trichoderma strains and theirs bio-control effects on shoot blight of Pinus sylvestris var. mongolica[J]. Journal of Central South University of Forestry & Technology, 2012, 32(11): 21−27.
    [25]
    Oliva J, Boberg J, Stenlid J. First report of Sphaeropsis sapinea on Scots pine (Pinus sylvestris) and Austrian pine (P. nigra) in Sweden[J]. New Disease Reports, 2013, 27(1): 23−23. doi: 10.5197/j.2044-0588.2013.027.023
    [26]
    Porebski S, Grant B L, Bernard R. B. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 1997, 15(1): 8−15. doi: 10.1007/BF02772108
    [27]
    White T J, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]// MA Innis. PCR protocols: a guide to methods and applications. New York: Academic Press, 1990: 315−322.
    [28]
    Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996−998. doi: 10.1038/nmeth.2604
    [29]
    Bolyen E, Rideout J R, Dillon M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(8): 852−857. doi: 10.1038/s41587-019-0209-9
    [30]
    Grice E A, Kong H H, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome[J]. Science, 2009, 324: 1190−1192. doi: 10.1126/science.1171700
    [31]
    Nguyen N H, Song Z, Bates S T, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241−248. doi: 10.1016/j.funeco.2015.06.006
    [32]
    Bills G F, Collado J, Ruibal C, et al. Hormonema carpetanum sp. nov., a new lineage of dothideaceous black yeasts from Spain[J]. Studies in Mycology, 2004, 50: 149−157.
    [33]
    Pan Y, Ye H, Lu J, et al. Isolation and identification of Sydowia polyspora and its pathogenicity on Pinus yunnanensis in southwestern China[J]. Journal of Phytopathology, 2018, 166(6): 386−395. doi: 10.1111/jph.12696
    [34]
    Cleary M, Oskay F, Doğmuş H T, et al. Cryptic risks to forest biosecurity associated with the global movement of commercial seed[J/OL]. Forests, 2019, 10(5): 459[2019−05−27]. https://doi.org/10.3390/f10050459.
    [35]
    Talgø V, Chastagner G, Thomsen I M, et al. Sydowia polyspora associated with current season needle necrosis (CSNN) on true fir (Abies spp.)[J]. Fungal Biology, 2010, 114(7): 545−554. doi: 10.1016/j.funbio.2010.04.005
    [36]
    Bergmann G E, Busby P E. The core seed mycobiome of Pseudotsuga menziesii var. menziesii across provenances of the Pacific Northwest, USA[J]. Mycologia, 2021, 113(6): 1169−1180.
    [37]
    Peláez F, Cabello A, Platas G, et al. The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms[J]. Systematic and Applied Microbiology, 2000, 23(3): 333−343. doi: 10.1016/S0723-2020(00)80062-4
    [38]
    刘政, 李燕, 孙艳, 等. 黄萎病侵染后棉花根部内生真菌群落结构分析[J]. 西北农业学报, 2016, 25(1): 42−47. doi: 10.7606/j.issn.1004-1389.2016.01.006

    Liu Z, Li Y, Sun Y, et al. Analysing endophytic fungi communities in cotton roots infected with Verticillium[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(1): 42−47. doi: 10.7606/j.issn.1004-1389.2016.01.006
  • Related Articles

    [1]Xu Jingliang, Zhu Jiyou, Yan Xiangru, Xu Chengyang. Effects of urban heat island intensity on leaf water-relevant traits of greening tree species with different leaf textures[J]. Journal of Beijing Forestry University, 2024, 46(9): 97-106. DOI: 10.12171/j.1000-1522.20230254
    [2]Li Ronghui, Chen Ling, Wu Mingjing, Yu Xiaolong, Zhao Xiuhai. Application strategies for GLCM textures from very high spatial resolution optical imagery over subtropical plantations[J]. Journal of Beijing Forestry University, 2021, 43(1): 1-9. DOI: 10.12171/j.1000-1522.20200139
    [3]Wu Yanshuang, Zhang Xiaoli. Object-oriented tree species classification with multi-scale texture features based on airborne hyperspectral images[J]. Journal of Beijing Forestry University, 2020, 42(6): 91-101. DOI: 10.12171/j.1000-1522.20190155
    [4]Liu Jiazheng, Wang Xuefeng, Wang Tian. Research on image recognition of five bark texture images based on deep learning[J]. Journal of Beijing Forestry University, 2019, 41(4): 146-154. DOI: 10.13332/j.1000-1522.20180242
    [5]WANG Dan-qing, HE Jing, ZHANG Qiu-hui. Effects of fumigation treatment on wood color and mechanical strength of Larix gmelinii[J]. Journal of Beijing Forestry University, 2017, 39(2): 100-107. DOI: 10.13332/j.1000-1522.20160317
    [6]LIU Huai-peng, AN Hui-jun, WANG Bing, ZHANG Qiu-liang. Tree species classification using WorldView-2 images based on recursive texture feature elimination[J]. Journal of Beijing Forestry University, 2015, 37(8): 53-59. DOI: 10.13332/j.1000-1522.20140311
    [7]ZHANG Ning, FENG Yue-wen, ZHANG Xiao-li, FAN Jiang-chuan. Extracting individual tree crown by combining spectral and texture features from aerial images[J]. Journal of Beijing Forestry University, 2015, 37(3): 13-19. DOI: 10.13332/j.1000-1522.20140309
    [8]CHEN Ling, HAO Wen-qian, GAO De-liang. The latest applications of optical image texture in forestry[J]. Journal of Beijing Forestry University, 2015, 37(3): 1-12. DOI: 10.13332/j.1000-1522.20140304
    [9]ZHANG Yi-zhuo, MA Lin, XU Lei1, YU Hui-ling. Wood board texture classification based on genetic fusion of wavelet and curvelet features.[J]. Journal of Beijing Forestry University, 2014, 36(2): 119-124.
    [10]SONG Sha-sha, ZHAO Guang-jie. Fractal characteristics of macroscopic and microscopic cell-piled structure patterns of wood[J]. Journal of Beijing Forestry University, 2011, 33(4): 102-106.
  • Cited by

    Periodical cited type(2)

    1. 薛雨,姚金明,卢庆辉,杨忍. 基于NDVI和深度学习的多源影像冬小麦提取研究. 现代信息科技. 2023(02): 120-122 .
    2. 陈玉麟,田茂元. 提升江津区林业碳汇能力的思考. 林业勘查设计. 2023(03): 71-75 .

    Other cited types(3)

Catalog

    Article views (299) PDF downloads (20) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return