• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhao Dong, Ma Rongyu, Yu Lichuan, Zhao Jian, Liu Jiahui. Monitoring and identification of microscopic damage during fir loading based on empirical modal decomposition and wavelet packet energy entropy[J]. Journal of Beijing Forestry University, 2024, 46(3): 123-131. DOI: 10.12171/j.1000-1522.20230365
Citation: Zhao Dong, Ma Rongyu, Yu Lichuan, Zhao Jian, Liu Jiahui. Monitoring and identification of microscopic damage during fir loading based on empirical modal decomposition and wavelet packet energy entropy[J]. Journal of Beijing Forestry University, 2024, 46(3): 123-131. DOI: 10.12171/j.1000-1522.20230365

Monitoring and identification of microscopic damage during fir loading based on empirical modal decomposition and wavelet packet energy entropy

More Information
  • Received Date: December 19, 2023
  • Revised Date: January 25, 2024
  • Accepted Date: January 31, 2024
  • Available Online: February 04, 2024
  • Objective 

    Microscopic damage is a primary contributor to wood fracture. The intricate porous laminar structure of wood makes the damage process complex, posing challenges in fully comprehending the microscopic damage information within the acoustic emission signal of wood fracture through a single signal processing method. This limitation results in inadequate and incomplete identification information. This study introduced a signal processing approach that combined empirical modal decomposition (EMD) and wavelet packet energy entropy to discern the various types of microscopic damage occurring during the loading process of fir (Cunninghamia lanceolata) using acoustic emission nondestructive testing.

    Method 

    Three individual damage tests, namely uniaxial compression, double cantilever beam, and parallel tensile were conducted on fir as the study object. Acoustic emission signals were acquired, monitored, and analyzed throughout the loading processes. The wavelet packet thresholding method was employed to eliminate noise from the acoustic emission signals recorded during the damage tests. Furthermore, the EMD method, coupled with correlation coefficient calculations, was utilized to isolate the intrinsic mode function (IMF) components, which can fully reflect the characteristics of microscopic damage in fir. Subsequently, Fourier-transform-based peak frequency analysis and wavelet-packet energy entropy analysis were executed on the IMF components to extract the features associated with the microscopic damage in fir.

    Result 

    (1) The combination of EMD and wavelet packet energy entropy effectively determined the type and composition of signals corresponding to microscopic damage. (2) Acoustic emission signals of different microscopic damage types corresponded to distinct wavelet energy entropy intervals: buckling and collapse of cell wall (0.69−0.99), delamination (1.57−1.78), and fiber bundle breakage (1.92−2.27). (3) The accuracy of the method was verified by macroscopic fracture and scanning electron microscopy experiments.

    Conclusion 

    The combination of EMD and wavelet packet energy entropy can avoid the influence of modal stacking in acoustic emission signals, and resolve the hard problem of recognizing complex microscopic damages in wood. This approach offers theoretical basis for the early diagnosis of fir wood fractures.

  • [1]
    邵卓平. 木材损伤断裂与木材细观损伤基本构元[J]. 林业科学, 2007, 43(4): 107−110.

    Shao Z P. Wood damage-fracture and wood meso-damage elements[J]. Scientia Silvae Sinicae, 2007, 43(4): 107−110.
    [2]
    邵卓平, 陈品, 查朝生, 等. 木材损伤断裂过程的声发射特性与Felicity效应[J]. 林业科学, 2009, 45(2): 86−91.

    Shao Z P, Chen P, Zha Z S, et al. Acoustic emission characteristics of damage and fracture process of wood and felicity effect[J]. Scientia Silvae Sinicae, 2009, 45(2): 86−91.
    [3]
    涂郡成, 赵东, 赵健. 应用AE和DIC原位监测含横纹裂纹木构件的裂纹演化规律试验研究[J]. 北京林业大学学报, 2020, 42(1): 142−148.

    Tu J C, Zhao D, Zhao J. Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation[J]. Journal of Beijing Forestry University, 2020, 42(1): 142−148.
    [4]
    赵小矛, 焦亮亮, 赵健, 等. 榫卯结构弯曲破坏时声发射衰减特性与源定位[J]. 北京林业大学学报, 2017, 39(1): 107−111.

    Zhao X M, Jiao L L, Zhao J, et al. Acoustic emission attenuation and source location on the bending failure of the rectangular mortise-tenon joint for wood structures[J]. Journal of Beijing Forestry University, 2017, 39(1): 107−111.
    [5]
    王丽宇, 鹿振友, 赵东, 等. 白桦材LT型裂纹的演化与增长行为的研究[J]. 北京林业大学学报, 2002, 24(2): 59−61. doi: 10.3321/j.issn:1000-1522.2002.02.012

    Wang L Y, Lu Z Y, Zhao D, et al. Crack initiation and propagation in LT specimens of Betula platyphylla Suk[J]. Journal of Beijing Forestry University, 2002, 24(2): 59−61. doi: 10.3321/j.issn:1000-1522.2002.02.012
    [6]
    张美林, 李俊萩, 张晴晖, 等. 基于熵和波形特征的木材损伤断裂过程声发射信号处理[J]. 林业工程学报, 2022, 7(2): 159−166.

    Zhang M L, Li J Q, Zhang Q H, et al. Acoustic emission signal processing and analysis of wood damage and fracture process based on entropy and waveform characteristics[J]. Journal of Forestry Engineering, 2022, 7(2): 159−166.
    [7]
    Tu J C, Yu L C, Zhao J, et al. Damage modes recognition of wood based on acoustic emission technique and Hilbert-Huang transform analysis[J]. Forests, 2022, 13(4): 631. doi: 10.3390/f13040631
    [8]
    Liu X L, Liu Z, Li X B, et al. Experimental study on the effect of strain rate on rock acoustic emission characteristics[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104420. doi: 10.1016/j.ijrmms.2020.104420
    [9]
    Verstrynge E, van Steen C, Vandecruys E, et al. Steel corrosion damage monitoring in reinforced concrete structures with the acoustic emission technique: a review[J]. Construction and Building Materials, 2022, 349: 128732. doi: 10.1016/j.conbuildmat.2022.128732
    [10]
    Li Y, Xu F Y. Structural damage monitoring for metallic panels based on acoustic emission and adaptive improvement variational mode decomposition-wavelet packet transform[J]. Structural Health Monitoring, 2022, 21(2): 710−730. doi: 10.1177/14759217211008969
    [11]
    He K F, Xia Z X, Si Y, et al. Noise reduction of welding crack ae signal based on EMD and wavelet packet[J]. Sensors, 2020, 20: 761. doi: 10.3390/s20030761
    [12]
    Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Science, 1998, 454: 903−995.
    [13]
    Yang Y, Yu D J, Cheng J S. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of Sound and Vibration, 2006, 294(1−2): 269−277.
    [14]
    Tu J C, Zhao D, Zhao J, et al. Experimental study on crack initiation and propagation of wood with LT-type crack using digital image correlation (DIC) technique and acoustic emission (AE)[J]. Wood Science and Technology, 2021, 55: 1577−1591. doi: 10.1007/s00226-020-01252-8
    [15]
    李柬龙, 陈胜, 李海潮, 等. 轻木细胞壁超微结构与力学性能关系研究[J]. 北京林业大学学报, 2022, 44(2): 115−122.

    Li J L, Chen S, Li H C, et al. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115−122.
  • Related Articles

    [1]Cai Zhiyong, Sun Long, Hu Haiqing, Zhao Nan, Sun Jiabao. Dynamic prediction of forest litter load based on litter decomposition rate[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230183
    [2]Guan Cheng, Xin Zhenbo, Liu Jinhao, Zhang Houjiang, Zhou Jianhui, Li Huan, Liu Suyang. Modal sensitivity and vibration mode of full-size oriented strand board panel under three boundary conditions[J]. Journal of Beijing Forestry University, 2021, 43(12): 105-115. DOI: 10.12171/j.1000-1522.20210264
    [3]WANG Cun-guo, CHEN Zheng-xia, MA Cheng-en, LIN Gui-gang, HAN Shi-jie. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123-128. DOI: 10.13332/j.1000-1522.20150437
    [4]ZHENG Jun-qiang, GUO Rui-hong, LI Dong-sheng, LI Dong, LI Jin-gong, ZHU Bao-kun, HAN Shi-jie. Effects of nitrogen deposition and drought on litter decomposition in a temperate forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 21-28. DOI: 10.13332/j.1000-1522.20150464
    [5]ZHANG Qin, LIN Tian xi, WANG Gui chun, SUN Guo wen, FAN Xiu hua. Decomposition of mixed litter of Pinus koraiensis, Quercus mongolica and Acer mono[J]. Journal of Beijing Forestry University, 2014, 36(6): 106-111. DOI: 10.13332/j.cnki.jbfu.2014.06.020
    [6]LIU Zhen-bo, LI Si-dan, LIU Yi-xing, HUANG Ying-lai. Vibration modal analysis of resonance board of Pi-pa.[J]. Journal of Beijing Forestry University, 2012, 34(2): 125-132.
    [7]HU Chuan-shuang, WEN Wei, ZHOU Hai-bin, YUN Hong. Detection of simulated defects of wood beams by using the differences of local modal flexibility[J]. Journal of Beijing Forestry University, 2011, 33(5): 122-125.
    [8]WANG Xiong-bin, GU Jian-cai, ZHU Jian-gang, LU Shao-wei, , YU Xin-xiao, LI Yong-jie. Entropy calculation and its application in forest biomass distribution. [J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 160-164.
    [9]FAN Hou-bao, , LIU Wen-fei, YANG Yue-lin, ZHANG Zi-wen, CAO Hanyang, XU Lei. Decomposition of leaf litter of Chinese fir in response to increased nitrogen deposition[J]. Journal of Beijing Forestry University, 2008, 30(2): 8-13.
    [10]LIU Qiang, PENG Shao-lin, BI Hua, ZHANG Hong-yi, LI Zhi-an, MA Wen-hui, LI Ni-ya. Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests.[J]. Journal of Beijing Forestry University, 2005, 27(1): 24-32.

Catalog

    Article views (385) PDF downloads (55) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return