Citation: | Zhao Dong, Ma Rongyu, Yu Lichuan, Zhao Jian, Liu Jiahui. Monitoring and identification of microscopic damage during fir loading based on empirical modal decomposition and wavelet packet energy entropy[J]. Journal of Beijing Forestry University, 2024, 46(3): 123-131. DOI: 10.12171/j.1000-1522.20230365 |
Microscopic damage is a primary contributor to wood fracture. The intricate porous laminar structure of wood makes the damage process complex, posing challenges in fully comprehending the microscopic damage information within the acoustic emission signal of wood fracture through a single signal processing method. This limitation results in inadequate and incomplete identification information. This study introduced a signal processing approach that combined empirical modal decomposition (EMD) and wavelet packet energy entropy to discern the various types of microscopic damage occurring during the loading process of fir (Cunninghamia lanceolata) using acoustic emission nondestructive testing.
Three individual damage tests, namely uniaxial compression, double cantilever beam, and parallel tensile were conducted on fir as the study object. Acoustic emission signals were acquired, monitored, and analyzed throughout the loading processes. The wavelet packet thresholding method was employed to eliminate noise from the acoustic emission signals recorded during the damage tests. Furthermore, the EMD method, coupled with correlation coefficient calculations, was utilized to isolate the intrinsic mode function (IMF) components, which can fully reflect the characteristics of microscopic damage in fir. Subsequently, Fourier-transform-based peak frequency analysis and wavelet-packet energy entropy analysis were executed on the IMF components to extract the features associated with the microscopic damage in fir.
(1) The combination of EMD and wavelet packet energy entropy effectively determined the type and composition of signals corresponding to microscopic damage. (2) Acoustic emission signals of different microscopic damage types corresponded to distinct wavelet energy entropy intervals: buckling and collapse of cell wall (0.69−0.99), delamination (1.57−1.78), and fiber bundle breakage (1.92−2.27). (3) The accuracy of the method was verified by macroscopic fracture and scanning electron microscopy experiments.
The combination of EMD and wavelet packet energy entropy can avoid the influence of modal stacking in acoustic emission signals, and resolve the hard problem of recognizing complex microscopic damages in wood. This approach offers theoretical basis for the early diagnosis of fir wood fractures.
[1] |
邵卓平. 木材损伤断裂与木材细观损伤基本构元[J]. 林业科学, 2007, 43(4): 107−110.
Shao Z P. Wood damage-fracture and wood meso-damage elements[J]. Scientia Silvae Sinicae, 2007, 43(4): 107−110.
|
[2] |
邵卓平, 陈品, 查朝生, 等. 木材损伤断裂过程的声发射特性与Felicity效应[J]. 林业科学, 2009, 45(2): 86−91.
Shao Z P, Chen P, Zha Z S, et al. Acoustic emission characteristics of damage and fracture process of wood and felicity effect[J]. Scientia Silvae Sinicae, 2009, 45(2): 86−91.
|
[3] |
涂郡成, 赵东, 赵健. 应用AE和DIC原位监测含横纹裂纹木构件的裂纹演化规律试验研究[J]. 北京林业大学学报, 2020, 42(1): 142−148.
Tu J C, Zhao D, Zhao J. Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation[J]. Journal of Beijing Forestry University, 2020, 42(1): 142−148.
|
[4] |
赵小矛, 焦亮亮, 赵健, 等. 榫卯结构弯曲破坏时声发射衰减特性与源定位[J]. 北京林业大学学报, 2017, 39(1): 107−111.
Zhao X M, Jiao L L, Zhao J, et al. Acoustic emission attenuation and source location on the bending failure of the rectangular mortise-tenon joint for wood structures[J]. Journal of Beijing Forestry University, 2017, 39(1): 107−111.
|
[5] |
王丽宇, 鹿振友, 赵东, 等. 白桦材LT型裂纹的演化与增长行为的研究[J]. 北京林业大学学报, 2002, 24(2): 59−61. doi: 10.3321/j.issn:1000-1522.2002.02.012
Wang L Y, Lu Z Y, Zhao D, et al. Crack initiation and propagation in LT specimens of Betula platyphylla Suk[J]. Journal of Beijing Forestry University, 2002, 24(2): 59−61. doi: 10.3321/j.issn:1000-1522.2002.02.012
|
[6] |
张美林, 李俊萩, 张晴晖, 等. 基于熵和波形特征的木材损伤断裂过程声发射信号处理[J]. 林业工程学报, 2022, 7(2): 159−166.
Zhang M L, Li J Q, Zhang Q H, et al. Acoustic emission signal processing and analysis of wood damage and fracture process based on entropy and waveform characteristics[J]. Journal of Forestry Engineering, 2022, 7(2): 159−166.
|
[7] |
Tu J C, Yu L C, Zhao J, et al. Damage modes recognition of wood based on acoustic emission technique and Hilbert-Huang transform analysis[J]. Forests, 2022, 13(4): 631. doi: 10.3390/f13040631
|
[8] |
Liu X L, Liu Z, Li X B, et al. Experimental study on the effect of strain rate on rock acoustic emission characteristics[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104420. doi: 10.1016/j.ijrmms.2020.104420
|
[9] |
Verstrynge E, van Steen C, Vandecruys E, et al. Steel corrosion damage monitoring in reinforced concrete structures with the acoustic emission technique: a review[J]. Construction and Building Materials, 2022, 349: 128732. doi: 10.1016/j.conbuildmat.2022.128732
|
[10] |
Li Y, Xu F Y. Structural damage monitoring for metallic panels based on acoustic emission and adaptive improvement variational mode decomposition-wavelet packet transform[J]. Structural Health Monitoring, 2022, 21(2): 710−730. doi: 10.1177/14759217211008969
|
[11] |
He K F, Xia Z X, Si Y, et al. Noise reduction of welding crack ae signal based on EMD and wavelet packet[J]. Sensors, 2020, 20: 761. doi: 10.3390/s20030761
|
[12] |
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Science, 1998, 454: 903−995.
|
[13] |
Yang Y, Yu D J, Cheng J S. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of Sound and Vibration, 2006, 294(1−2): 269−277.
|
[14] |
Tu J C, Zhao D, Zhao J, et al. Experimental study on crack initiation and propagation of wood with LT-type crack using digital image correlation (DIC) technique and acoustic emission (AE)[J]. Wood Science and Technology, 2021, 55: 1577−1591. doi: 10.1007/s00226-020-01252-8
|
[15] |
李柬龙, 陈胜, 李海潮, 等. 轻木细胞壁超微结构与力学性能关系研究[J]. 北京林业大学学报, 2022, 44(2): 115−122.
Li J L, Chen S, Li H C, et al. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115−122.
|
[1] | FAN Zi-luan, ZHANG Yan-dong, ZHANG Hua, WANG Zhen-yu, BAO Yi-hong. Antioxidant and antibacterial activity of essential oil from Pinus koraiensis needles[J]. Journal of Beijing Forestry University, 2017, 39(8): 98-103. DOI: 10.13332/j.1000-1522.20160265 |
[2] | WENG Yue-tai, XUE Yu, XU Shuo, ZHANG Guo-liang, LIU Yue, DI Xue-ying. Extraction of total flavonoids from Cronartium orientale aeciospores by response surface methodology and its antioxidant activity in vitro[J]. Journal of Beijing Forestry University, 2017, 39(3): 38-47. DOI: 10.13332/j.1000-1522.20160269 |
[3] | ZHAO Qing, Lu Xiao-fei, ZHU Xiao-ran, ZHANG Na, GUO Qing-qi. Optimization of extraction technology for lilac polyphenols and their antioxidant activity.[J]. Journal of Beijing Forestry University, 2015, 37(10): 125-129. DOI: 10.13332/j.1000-1522.20140174 |
[4] | GUO Qing-qi, ZHANG Na, LIU Yi-bing, WANG Zhen-yu. Microwave and ultrasonic effects on the extraction and antioxidation of larch bark polyphenols.[J]. Journal of Beijing Forestry University, 2015, 37(1): 134-138. DOI: 10.13332/j.cnki.jbfu.2015.01.018 |
[5] | GUO Qing-qi, ZHANG Na, LI Meng-yun, ZHANG Zhi, WANG Zhen-yu. Relationship between polyphenols and antioxidation in larch pine cones and growing slope aspect.[J]. Journal of Beijing Forestry University, 2014, 36(1): 62-65. |
[6] | ZHOU Xing-zi, WANG Zi-na, ZENG Hong-sheng, XIA Er-dong, CHEN Lin, REN Di-feng, LU Jun. Preparation process and antioxidant activity of walnut fermented drinks.[J]. Journal of Beijing Forestry University, 2013, 35(5): 139-143. |
[7] | GUO Qing-qi, ZHANG Na, LI Meng-yun, ZHANG Zhi, WANG Zhen-yu. Relationship between polyphenols and antioxidation in larch pine cones and altitude[J]. Journal of Beijing Forestry University, 2013, 35(1): 59-63. |
[8] | CHEN Jian, SUN Ai-dong, GAO Xue-juan, TAO Xiao-yun, WANG Shan-shan. .Extraction and antioxidation of anthocyanins from blueberry.[J]. Journal of Beijing Forestry University, 2011, 33(2): 126-129. |
[9] | JIN Ying, SUN Ai-dong, HU Xiao-dan, WANG Xiao-nan. Ultrasonic extraction and antioxidant activities of apple polyphenols[J]. Journal of Beijing Forestry University, 2007, 29(5): 137-141. DOI: 10.13332/j.1000-1522.2007.05.025 |
[10] | WANG Rui-gang, CHEN Shao-liang, LIU Li-yuan, HAO Zhi-yong, WENG Hai-jiao, LI He, YANG Shuang, DUAN Shan. Genotypic differences in antioxidative ability and salt tolerance of three poplars under sact stress[J]. Journal of Beijing Forestry University, 2005, 27(3): 46-52. |
1. |
兰宇铭. 基于CiteSpace的国内红松研究趋势与热点分析. 辽宁林业科技. 2022(01): 33-39 .
![]() | |
2. |
都津铭,张萍,高德. 丁香精油与茶多酚复合抗菌液的抑菌活性协同作用及抗氧化活性. 现代食品科技. 2021(10): 87-95 .
![]() | |
3. |
李晓娇,李悦,董锦,张化艳,宋志姣. 云南松针精油的提取及抗氧化活性研究. 中国食品添加剂. 2020(07): 27-35 .
![]() | |
4. |
龚婷,张敏,王海珠,宗学凤,廖林正. 大叶茜草精油挥发性物质抑菌及抗氧化活性研究. 西南师范大学学报(自然科学版). 2019(06): 54-59 .
![]() | |
5. |
岳鑫,包怡红. 基于荧光及紫外光谱法对红松种鳞多酚与乳清蛋白相互作用的研究. 现代食品科技. 2019(07): 114-120 .
![]() | |
6. |
郭奇泳,张艳,石茂军,张琪瑶,吴聪,赵玉红. 烘焙对红松种籽衣活性成分含量及抗氧化活性的影响. 现代食品科技. 2018(12): 159-166+158 .
![]() | |
7. |
樊梓鸾,张艳东,张华,王振宇,包怡红. 红松松针精油抗氧化和抑菌活性研究. 北京林业大学学报. 2017(08): 98-103 .
![]() | |
8. |
樊梓鸾,陈凯莉,高芯,包怡红. 五种松针多酚的提取优化及抗氧化活性研究. 现代食品科技. 2017(08): 211-220 .
![]() |