• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Wenmin, Wang Meixian. Influence of 7 street tree species on thermal comfort of pedestrians in summer in Beijing[J]. Journal of Beijing Forestry University, 2024, 46(9): 107-118. DOI: 10.12171/j.1000-1522.20240012
Citation: Yang Wenmin, Wang Meixian. Influence of 7 street tree species on thermal comfort of pedestrians in summer in Beijing[J]. Journal of Beijing Forestry University, 2024, 46(9): 107-118. DOI: 10.12171/j.1000-1522.20240012

Influence of 7 street tree species on thermal comfort of pedestrians in summer in Beijing

More Information
  • Received Date: January 08, 2024
  • Revised Date: June 09, 2024
  • Accepted Date: July 07, 2024
  • Available Online: July 08, 2024
  • Objective 

    The impact of street tree species and structural characteristics on the thermal comfort of pedestrians and the thermal environment of road spaces during summer was investigated to provide a basis for the species selection, structural design, and subsequent maintenance management of street trees in Beijing and other northern regions of China.

    Method 

    Taking the Fraxinus chinensis, Platanus orientalis, Ailanthus altissima, Koelreuteria paniculata, Salix matsudana, Ginkgo biloba and Styphnolobium japonicum along the roads in Xicheng District of Beijing as the research objects, this study measured the air temperature, relative humidity, solar radiation, and wind speed within their shaded spaces in summer. The universal thermal climate index (UTCI) was employed as the thermal comfort evaluation metric and the thermal sensation vote (TSV) of pedestrians was analyzed.

    Result 

    (1) All the 7 street tree species could significantly improve the thermal environment of road space, reducing the air temperature from 1.0 to 2.1 ℃, reducing solar radiation from 481.27 to 789.18 W/m2, and increasing relative humidity from 0.65% to 6.17%. Wind speed reduction range was 0.02−0.38 m/s. (2) All the 7 street tree species could significantly adjust the thermal comfort of pedestrians, and the average UTCI decreased in the order of Salix matsudana > Styphnolobium japonicum > Platanus orientalis > Fraxinus chinensis > Ginkgo biloba > Koelreuteria poniculata > Ailanthus altissima. In summer, the neutral UTCI of pedestrians under road where the 7 street tree species were located was 24.7 ℃. (3) Air temperature and solar radiation were the decisive factors affecting TSV of pedestrians in summer. Leaf area index had a significantly negative correlation with air temperature and solar radiation, and a significantly positive correlation with relative humidity. Leaf area index was the most significant tree structure affecting UTCI, followed by crown width, while average leaf area had less effect. (4) Based on UTCI, TSV and neutral temperature evaluation, it was considered that the performance of 7 street tree species was as follows: Salix matsudana > Styphnolobium japonicum > Platanus orientalis > Fraxinus chinensis > Ginkgo biloba > Ailanthus altissima > Koelreuteria poniculata.

    Conclusion 

    In the future, suitable street tree species should be selected according to the thermal environment of road space in different regions, and it is proposed that street tree species with larger leaf density and crown width can provide a more comfortable road environment for pedestrians in summer.

  • [1]
    Acero J A, Herranz-Pascual K. A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques[J]. Building and Environment, 2015, 93(2): 245−257.
    [2]
    Abdi B, Hami A, Zarehaghi D. Impact of small-scale tree planting patterns on outdoor cooling and thermal comfort[J]. Sustainable Cities and Society, 2020, 56: 102085−102085. doi: 10.1016/j.scs.2020.102085
    [3]
    Zhang L, Xu H, Pan J. Investigating the relationship between landscape design types and human thermal comfort: case study of Beijing Olympic Forest Park[J]. Sustainability, 2023, 15(4): 2969. doi: 10.3390/su15042969
    [4]
    Coutts A M, White E C, Tapper N J, et al. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments[J]. Theoretical and Applied Climatology, 2016, 124(1): 55−68.
    [5]
    Taleghani M, Sailor D, Ban-Weiss G A. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood[J]. Environmental Research Letters, 2016, 11(2): 024003. doi: 10.1088/1748-9326/11/2/024003
    [6]
    何昊, 陈光, 陈漪淇, 等. 基于PET的湿热地区冬季树木对小气候影响的实测研究[J]. 建筑科学, 2023, 39(6): 80−88, 108.

    He H, Chen G, Chen Y Q, et al. Pet-based field research on the influence of trees on microclimate in hot and humid areas in winter[J]. Building Science, 2023, 39(6): 80−88, 108.
    [7]
    Huang Z, Wu C, Teng M, et al. Impacts of tree canopy cover on microclimate and human thermal comfort in a shallow street canyon in Wuhan, China[J]. Atmosphere, 2020, 11(6): 588.
    [8]
    Bröde P, Fiala D, Błażejczyk K, et al. Deriving the operational procedure for the universal thermal climate index (UTCI)[J]. International Journal of Biometeorology, 2012, 56(3): 481−494. doi: 10.1007/s00484-011-0454-1
    [9]
    郑有飞, 尹继福, 吴荣军, 等. 热气候指数在人体舒适度预报中的适用性[J]. 应用气象学报, 2010, 21(6): 709−715. doi: 10.3969/j.issn.1001-7313.2010.06.007

    Zheng Y F, Yin J F, Wu R J, et al. Applicability of universal thermal climate index to thermal comfort forecast[J]. Journal of Applied Meteorological Science, 2010, 21(6): 709−715. doi: 10.3969/j.issn.1001-7313.2010.06.007
    [10]
    王一, 潘宸, 黄子硕. 上海地区不同季节PET和UTCI的适用性比较[J]. 建筑科学, 2020, 36(10): 55−61.

    Wang Y, Pan C, Huang Z S. Comparison of applicability of PET and UTCI in different seasons in Shanghai[J]. Building Science, 2020, 36(10): 55−61.
    [11]
    陈俊, 何荣晓, 曹凌仪, 等. 街道环境因素对夏季人行空间热舒适的影响[J]. 中国城市林业, 2023, 21(1): 37−42, 49. doi: 10.12169/zgcsly.2022.12.09.0002

    Chen J, He R X, Cao L Y, et al. Influence of street environmental factors on thermal comfort of pedestrian space in summer[J]. Journal of Chinese Urban Forestry, 2023, 21(1): 37−42, 49. doi: 10.12169/zgcsly.2022.12.09.0002
    [12]
    邵钰涵, 刘滨谊. 城市街道空间小气候参数及其景观影响要素研究[J]. 风景园林, 2016(10): 98−104.

    Shao Y H, Liu B Y. A study on microclimate parameters of urban street space and its influential factors[J]. Landscape Architecture, 2016(10): 98−104.
    [13]
    刘大龙, 宋庆雨, 刘加平. 复杂辐射场对城市微气候的影响[J]. 暖通空调, 2021, 51(1): 23−28, 75.

    Liu D L, Song Q Y, Liu J P. Impact of complex radiation field on urban microclimate[J]. Heating Ventilating, 2021, 51(1): 23−28, 75.
    [14]
    刘启波, 杨雯婷. 基于气候特征的居住区室外热舒适多目标优化布局研究: 以西安地区为例[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(1): 54−60.

    Liu Q B, Yang W T. Study on multi-objective optimization layout of outdoor thermal comfort in residential areas based on climate characteristics: Taking Xi’an as an example[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2022, 54(1): 54−60.
    [15]
    向艳芬, 郑伯红. 基于热舒适性模拟评价的城市广场改造研究: 以长沙五一广场为例[J]. 铁道科学与工程学报, 2022, 19(1): 291−300.

    Xiang Y F, Zheng B H. Research on urban plaza renovation based on thermal comfort simulation evaluation: the case of Changsha Wuyi Square[J]. Journal of Railway Science and Engineering, 2022, 19(1): 291−300.
    [16]
    杨鸿玮, 陈子瑜, 席晖. 基于热舒适评价的口袋公园绿化结构设计决策研究: 以夏热冬冷地区某公园为例[J]. 建筑科学, 2023, 39(10): 210−221.

    Yang H W, Chen Z Y, Xi H. Research on the decision-making of green structure design for pocket park based on thermal comfort evaluation: taking a park in a hot summer and cold winter regions as an example[J]. Building Science, 2023, 39(10): 210−221.
    [17]
    潘剑彬, 史川, 黄田田, 等. 北京奥林匹克森林公园绿地人体感热舒适度空间差异特征[J]. 风景园林, 2023, 30(12): 114−120. doi: 10.12409/j.fjyl.202302220087

    Pan J B, Shi C, Huang T T, et al. Spatial differentiation characteristics of human thermal comfort in Beijing Olympic Forest Park[J]. Landscape Architecture, 2023, 30(12): 114−120. doi: 10.12409/j.fjyl.202302220087
    [18]
    张铮. 哈尔滨市道路绿化结构与改善小气候功能的研究[D]. 哈尔滨: 东北林业大学, 2007.

    Zhang Z. Study on structure of road greening and the improvement of microclimate in Harbin[D]. Harbin: Northeast Forestry University, 2007.
    [19]
    赵晓龙, 李国杰, 高天宇. 哈尔滨典型行道树夏季热舒适效应及形态特征调节机理[J]. 风景园林, 2016(12): 74−80.

    Zhao X L, Li G J, Gao T Y. Thermal comfort effects and morphological characteristics of typical street trees in summer in Harbin[J]. Landscape Architecture, 2016(12): 74−80.
    [20]
    王美莲, 李志强, 银红, 等. 行道树绿化模式夏季小气候效应与人体舒适度研究[J]. 西北林学院学报, 2015, 30(5): 235−240.

    Wang M L, Li Z Q, Yin H, et al. Microclimate effects and human comfortability of street tree planting patterns in hot[J]. Journal of Northwest Forestry University, 2015, 30(5): 235−240.
    [21]
    李砚晗. 广州典型老旧小区环境热舒适研究[D]. 广州: 华南理工大学, 2022.

    Li Y H. Study on thermal comfort of typical old residential area in Guangzhou[D]. Guangzhou: South China University of Technology, 2022.
    [22]
    张妍, 康玲. 探究城市行道树种的选择[J]. 中华民居(下旬刊), 2014(5): 14.

    Zhang Y, Kang L. Explore the choice of city street tree species[J]. China Homes, 2014(5): 14.
    [23]
    江黎明. 基于改进Ga2SFCA的城市公园绿地步行可达性评价及其布局优化研究: 以北京西城区为例[D]. 北京: 北京建筑大学, 2023.

    Jiang L M. Research on walking accessibility evaluation and layout optimization of urban park green space based on improved Ga2SFCA: a case study of Xicheng District, Beijing[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2023.
    [24]
    Zheng S, Guldmann J M, Liu Z, et al. Influence of trees on the outdoor thermal environment in subtropical areas: an experimental study in Guangzhou, China[J]. Sustainable Cities and Society, 2018, 42(5): 482−497.
    [25]
    Matzarakis A, Rutz F, Mayer H. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model[J]. International Journal of Biometeorology, 2010, 54: 131−139.
    [26]
    张婷. 寒冷地区大学校园行道树季相特征对行人热感知与视觉感知的影响研究[D]. 杨凌: 西北农林科技大学, 2022.

    Zhang T. Effects of tree seasonal characteristics on pedestrian thermal perception and visual perception in a campus in the cold region of China[D]. Yangling: Northwest Agriculture and Forestry University, 2022.
    [27]
    Nie T, Lai D, Liu K, et al. Discussion on inapplicability of Universal Thermal Climate Index (UTCI) for outdoor thermal comfort in cold region[J]. Urban Climate, 2022, 46: 101304. doi: 10.1016/j.uclim.2022.101304
    [28]
    Lai D, Guo D, Hou Y, et al. Studies of outdoor thermal comfort in northern China[J]. Building and Environment, 2014, 77: 110−118. doi: 10.1016/j.buildenv.2014.03.026
    [29]
    Dear R J, Brager G S. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55[J]. Energy & Buildings, 2002, 34(6): 549−561.
    [30]
    Yang W, Wong N H, Zhang G. A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China[J]. International Journal of Biometeorology, 2013, 57(6): 895−907. doi: 10.1007/s00484-012-0616-9
    [31]
    Ruiz M A, Correa E N. Adaptive model for outdoor thermal comfort assessment in an oasis city of arid climate[J]. Building and Environment, 2015, 85: 40−51. doi: 10.1016/j.buildenv.2014.11.018
    [32]
    Ziter C D, Pedersen E J, Kucharik C J, et al. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer[J]. Proceedings of the National Academy of Sciences, 2019, 116(15): 7575−7580. doi: 10.1073/pnas.1817561116
    [33]
    Zhang Z, Lü Y, Pon H. Cooling and humidifying effect of plant communities in subtropical urban parks[J]. Urban Forestry & Urban Greening, 2013, 12(3): 323−329.
    [34]
    王洁, 郭飞, 张弘驰. 基于UTCI的寒地夏季商业街室外热舒适研究[J]. 低温建筑技术, 2023, 45(1): 1−4.

    Wang J, Guo F, Zhang H C. On the outdoor thermal comfort of commercial street in cold regions in summer based on UTCI[J]. Cryogenic Building Technology, 2023, 45(1): 1−4.
    [35]
    Yang X, Li S, Zhang Q, et al. Thermal comfort assessment of the Beijing historical town blocks: analysis of indices and applications[J]. Scientific Programming, 2022, 2022(1): 2381584.
    [36]
    吴仁武, 晏海, 舒也, 等. 竹类植物夏季微气候特征及其对人体舒适度的影响[J]. 中国园林, 2019, 35(7): 112−117.

    Wu R W, Yan H, Shu Y, et al. Microclimatic characteristics and human comfort conditions of bamboo plant communities in summer[J]. Chinese Garden, 2019, 35(7): 112−117.
    [37]
    Meili N, Manoli G, Burlando P, et al. Tree effects on urban microclimate: Diurnal, seasonal, and climatic temperature differences explained by separating radiation, evapotranspiration, and roughness effects[J]. Urban Forestry & Urban Greening, 2021, 58: 126970.
    [38]
    Gillner S, Vogt J, Tharang A, et al. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites[J]. Landscape and Urban Planning, 2015, 143: 33−42. doi: 10.1016/j.landurbplan.2015.06.005
    [39]
    Morakinyo T E, Lau K K L, Ren C, et al. Performance of Hong Kong’s common trees species for outdoor temperature regulation, thermal comfort and energy saving[J]. Building and Environment, 2018, 137: 157−170. doi: 10.1016/j.buildenv.2018.04.012
  • Cited by

    Periodical cited type(19)

    1. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    2. 田刘翔宇,张立世,姚纪元,王利民. 基于MaxEnt探究栖息地质量对百灵科鸟类分布影响. 东北师大学报(自然科学版). 2024(02): 106-116 .
    3. 章蜜,罗伟. 庐山保护区白颈长尾雉生境适宜性评价研究. 湖北林业科技. 2024(05): 44-48 .
    4. 王佩,李英杰,袁家根,耿盼,李蕊. 基于优化MaxEnt模型的原麝生境适宜性评价. 野生动物学报. 2023(01): 38-45 .
    5. 富爱华,郜二虎,布日古德,陈敏豪,提杨,栾晓峰. 我国白琵鹭(Platalea leucorodia)越冬地预测与保护现状分析. 生态与农村环境学报. 2022(01): 69-75 .
    6. 吴艳,王洪峰,穆立蔷. 物种分布模型的研究进展与展望. 高师理科学刊. 2022(05): 66-70 .
    7. 李鑫泽,冯佳楠,支晓亮,钟林强,刘鑫鑫,张明海. 东北地区三种鹿科动物潜在栖息地预测与保护空缺分析. 野生动物学报. 2021(02): 318-328 .
    8. 王艳君,高泰,石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报. 2021(09): 59-69 . 本站查看
    9. 张丽霞,孙冬婷,胡昕,朱向博,张敬,晁青鲜,卫泽珍,张成林. 中国圈养褐马鸡种群和饲养管理现状调查. 野生动物学报. 2021(04): 1123-1130 .
    10. 李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响. 林业科学. 2021(10): 102-110 .
    11. 刘博,王晔楠,唐超,刘丽,马光昌,彭正强,阎伟. 云斑斜线天蛾在我国的适生性及限制性环境因子分析. 热带作物学报. 2021(12): 3581-3587 .
    12. 李敏,李秀明,徐家慧,薛琳,武爱明,盘凯筠,闵晓明,李玉太,钱法文. 基于MaxEnt模型预测白琵鹭在中国东北地区的适宜分布区. 生态学杂志. 2020(08): 2691-2703 .
    13. 张丽霞,王志永. 褐马鸡栖息地保护研究. 特种经济动植物. 2020(12): 3-5 .
    14. 唐书培,穆丽光,王晓玲,张静,刘波,孟和达来,鲍伟东. 基于MaxEnt模型的赛罕乌拉国家级自然保护区斑羚生境适宜性评价. 北京林业大学学报. 2019(01): 102-108 . 本站查看
    15. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
    16. 白雪红,王文杰,蒋卫国,师华定,陈坤,陈民. 气候变化背景下京津冀地区濒危水鸟潜在适宜区模拟及保护空缺分析. 环境科学研究. 2019(06): 1001-1011 .
    17. 刘博,覃伟权,阎伟. 基于MaxEnt模型的小巢粉虱在中国的潜在地理分布. 环境昆虫学报. 2019(06): 1276-1286 .
    18. 王浩,杨德宏,满亚洲. 基于GIS技术的动物物种管理及保护. 软件. 2018(12): 111-115 .
    19. 侯海英. 山西褐马鸡种群分布及特性研究. 山西林业科技. 2018(04): 11-13+72 .

    Other cited types(17)

Catalog

    Article views (352) PDF downloads (30) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return