• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhao Han, Wang Mingjie, He Linhan, Chen Yao, Gao Jianmin. Preparation and its electrochemical properties of enzymatically hydrolyzed wood-based hierarchical porous carbon[J]. Journal of Beijing Forestry University, 2024, 46(10): 136-143. DOI: 10.12171/j.1000-1522.20240026
Citation: Zhao Han, Wang Mingjie, He Linhan, Chen Yao, Gao Jianmin. Preparation and its electrochemical properties of enzymatically hydrolyzed wood-based hierarchical porous carbon[J]. Journal of Beijing Forestry University, 2024, 46(10): 136-143. DOI: 10.12171/j.1000-1522.20240026

Preparation and its electrochemical properties of enzymatically hydrolyzed wood-based hierarchical porous carbon

More Information
  • Received Date: January 27, 2024
  • Revised Date: July 21, 2024
  • Accepted Date: September 15, 2024
  • Available Online: September 17, 2024
  • Objective 

    To extend the application of porous biomass carbon materials, the study used enzymatic hydrolysis technology to regulate the hierarchical porous structure of wood carbon, and prepared carbon materials with excellent electrochemical properties.

    Method 

    Basswood was subjected to enzymatic hydrolysis using sodium chlorite and cellulase, followed by the preparation of hierarchical porous carbon materials through high-temperature carbonization. By characterizing the micromorphology, specific surface area, pore structure, degree of graphitization, surface elements and functional groups of the hierarchical porous carbon, the effects of cellulase dosage and enzymatic hydrolysis time on microstructure and electrochemical performance were elucidated.

    Result 

    After enzymatic hydrolysis, the interior of basswood exhibited rich microporous/mesoporous structures, forming a hierarchical porous structure. The porosity and specific surface area of the porous carbon significantly increased with higher cellulase amounts and longer enzymatic hydrolysis times, accompanied by an increase in disorder. Notably, at a cellulase dosage of 200 mg and an enzymatic hydrolysis duration of 48 h, the specific surface area reached 978.925 m2/g, with an average pore diameter of 2.285 nm. At a current density of 0.1 A/g, the mass-specific capacitance was found to be 300.8 F/g, and the equivalent series resistance was 0.47 Ω.

    Conclusion 

    The enzymatically hydrolyzed wood-based hierarchical porous carbon materials produced in this study exhibit excellent electrochemical properties, and their hierarchical pore structure and high-rate performance suggest considerable potential for various applications.

  • [1]
    Zhang J, Zhao X S. On the configuration of supercapacitors for maximizing electrochemical performance[J]. ChemSusChem, 2012, 5(5): 818−841. doi: 10.1002/cssc.201100571
    [2]
    Qiu D, Guan J, Li M, et al. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors[J]. Advanced Functional Materials, 2019, 29(32): 1903496. doi: 10.1002/adfm.201903496
    [3]
    高奇, 项洪中, 倪良萌, 等. 超级电容器用生物质基活性炭电极材料研究进展[J]. 化工新型材料, 2022, 50(3): 12−17.

    Gao Q, Xiang H Z, Ni L M, et al. Research progress on biomass-activated carbon electrode material for supercapacitor[J]. New Chemical Materials, 2022, 50(3): 12−17.
    [4]
    Ji L, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2682−2699.
    [5]
    Lu S Y, Jin M, Zhang Y, et al. Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors[J]. Advanced Energy Materials, 2018, 8(11): 1702545. doi: 10.1002/aenm.201702545
    [6]
    Yang S, Wang S, Liu X, et al. Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors[J]. Carbon, 2019, 147: 540−549. doi: 10.1016/j.carbon.2019.03.023
    [7]
    Wang F, Cheong J Y, He Q, et al. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors[J]. Chemical Engineering Journal, 2021, 414: 128767. doi: 10.1016/j.cej.2021.128767
    [8]
    Zhu Z, Fu S, Lavoine N, et al. Structural reconstruction strategies for the design of cellulose nanomaterials and aligned wood cellulose-based functional materials: a review[J]. Carbohydrate Polymers, 2020, 247: 116722. doi: 10.1016/j.carbpol.2020.116722
    [9]
    孙振杰, 李彩风. 纤维素及其复合材料在超级电容器上的应用[J]. 中国造纸, 2020, 39(5): 70−75. doi: 10.11980/j.issn.0254-508X.2020.05.011

    Sun Z J, Li C F. Application of cellulose and its composites in supercapacitors[J]. China Pulp & Paper, 2020, 39(5): 70−75. doi: 10.11980/j.issn.0254-508X.2020.05.011
    [10]
    Yang Z, Deng Y, Li J. Preparation of porous carbonized woods impregnated with lauric acid as shape-stable composite phase change materials[J]. Applied Thermal Engineering, 2019, 150: 967−976. doi: 10.1016/j.applthermaleng.2019.01.063
    [11]
    Sheng X, Li Y, Yang T, et al. Hierarchical micro-reactor as electrodes for water splitting by metal rod tipped carbon nanocapsule self-assembly in carbonized wood[J]. Applied Catalysis B: Environmental, 2020, 264: 118536. doi: 10.1016/j.apcatb.2019.118536
    [12]
    Xia Z, Li J, Zhang J, et al. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids[J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 79−95. doi: 10.1016/j.jobab.2020.04.001
    [13]
    Chen C, Kuang Y, Zhu S, et al. Structure–property–function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5(9): 642−666. doi: 10.1038/s41578-020-0195-z
    [14]
    Peng X, Zhang L, Chen Z, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes[J]. Advanced Materials, 2019, 31(16): 1900341. doi: 10.1002/adma.201900341
    [15]
    Yang H, Wang Y, Yu Q, et al. Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage[J]. Applied Energy, 2018, 212: 455−464. doi: 10.1016/j.apenergy.2017.12.006
    [16]
    Ma L, Wang Q, Li L. Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage[J]. Solar Energy Materials and Solar Cells, 2019, 194: 215−221. doi: 10.1016/j.solmat.2019.02.026
    [17]
    Wang J, Zhang X, Li Z, et al. Recent progress of biomass-derived carbon materials for supercapacitors[J]. Journal of Power Sources, 2020, 451: 227794. doi: 10.1016/j.jpowsour.2020.227794
    [18]
    Qing Y, Jiang Y, Lin H, et al. Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots[J]. Journal of Materials Chemistry A, 2019, 7(11): 6021−6027. doi: 10.1039/C8TA11620B
    [19]
    Wang T, Hu S, Wu D, et al. Boosting the capacity of biomass-based supercapacitors using carbon materials of wood derivatives and redox molecules from plants[J]. Journal of Materials Chemistry A, 2021, 9(19): 11839−11852. doi: 10.1039/D1TA01542G
    [20]
    Xu J, Tan Z, Zeng W, et al. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes[J]. Advanced Materials, 2016, 28(26): 5222−5228. doi: 10.1002/adma.201600586
    [21]
    Luo Z, Lin N, Sun M, et al. Synthesis of 3D-interconnected hierarchical porous carbon from heavy fraction of bio-oil using crayfish shell as the biological template for high-performance supercapacitors[J]. Carbon, 2021, 173: 910−917. doi: 10.1016/j.carbon.2020.11.083
    [22]
    Li Y, Pan Y, Cong Y, et al. Decoration of defective graphene with MoS2 enabling enhanced anchoring and catalytic conversion of polysulfides for lithium-sulfur batteries: a first-principles study[J]. Physical Chemistry Chemical Physics, 2022, 24(47): 29214−29222. doi: 10.1039/D2CP03582K
    [23]
    Dannoun E M A, Aziz S B, Brza M A, et al. The study of plasticized solid polymer blend electrolytes based on natural polymers and their application for energy storage EDLC devices[J]. Polymers, 2020, 12(11): 2531. doi: 10.3390/polym12112531
    [24]
    Xie A, Zhang J, Tao X, et al. Nickel-based MOF derived Ni@ NiO/N–C nanowires with core-shell structure for oxygen evolution reaction[J]. Electrochimica Acta, 2019, 324: 134814. doi: 10.1016/j.electacta.2019.134814
    [25]
    Tang D, Luo Y, Lei W, et al. Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications[J]. Applied Surface Science, 2018, 462: 862−871. doi: 10.1016/j.apsusc.2018.08.153
    [26]
    Wang Z, Tan Y, Yang Y, et al. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors[J]. Journal of Power Sources, 2018, 378: 499−510. doi: 10.1016/j.jpowsour.2017.12.076
    [27]
    Gao Y, Zhang Y, Li A, et al. Facile synthesis of high-surface area mesoporous biochar for energy storage via in-situ template strategy[J]. Materials Letters, 2018, 230: 183−186. doi: 10.1016/j.matlet.2018.07.106
    [28]
    Ding Y, Huang S, Sun Y, et al. Preparation of nitrogen and sulfur Co-doped and interconnected hierarchical porous biochar by pyrolysis of mantis shrimp in CO2 atmosphere for symmetric supercapacitors[J]. ChemElectroChem, 2021, 8(19): 3745−3754. doi: 10.1002/celc.202101151
    [29]
    Liu M, Niu J, Zhang Z, et al. Porous carbons with tailored heteroatom doping and well-defined porosity as high-performance electrodes for robust Na-ion capacitors[J]. Journal of Power Sources, 2019, 414: 68−75. doi: 10.1016/j.jpowsour.2018.12.086
    [30]
    Zhou Q, Li H, Jia B, et al. One-pot synthesis of porous carbon from Chinese medicine residues driven by potassium citrate and application in supercapacitors[J]. Journal of Analytical and Applied Pyrolysis, 2023, 170: 105894. doi: 10.1016/j.jaap.2023.105894
  • Cited by

    Periodical cited type(15)

    1. 隆吉辉,田银芳,汪超群. 湘西杉木人工林树高-胸径混合效应模型构建. 湖南林业科技. 2024(02): 25-32 .
    2. 王帆,贾炜玮,唐依人,李丹丹. 基于TLS的红松树冠半径提取及其外轮廓模型构建. 南京林业大学学报(自然科学版). 2023(01): 13-22 .
    3. 单华平,冯骏,翟丕斌,侯义梅,陈东升,朱红军. 鄂西山区日本落叶松树高曲线的研究. 湖北林业科技. 2023(04): 1-4+10 .
    4. 孙天旭,张勇,郑燕凤,高莉,李庆,陈雪,林倩倩,张宜雪,王成德. 鲁中山区主要针叶树种树干削度方程研究——以侧柏、赤松、黑松为例. 山东农业大学学报(自然科学版). 2023(04): 613-619 .
    5. 聂璐毅,董利虎,李凤日,苗铮,谢龙飞. 基于两水平非线性混合效应模型的长白落叶松削度方程构建. 南京林业大学学报(自然科学版). 2022(03): 194-202 .
    6. 刘家腾,赵雪晗,刘伟韬,李建荣,蒋丽娟,周宇航,高慧淋,顾巍. 基于边际回归的沈阳市绿化树种人工油松冠形模拟. 应用生态学报. 2022(11): 2915-2922 .
    7. 刘金义. 辽东山区人工红松树高曲线研究. 辽宁林业科技. 2021(04): 9-11+31 .
    8. 吴丹子,王成德,李倞,刘敏. 福建杉木树冠外轮廓和树冠体积相容性模型. 浙江农林大学学报. 2020(01): 114-121 .
    9. 高慧淋,董利虎,李凤日. 基于修正Kozak方程的人工樟子松树冠轮廓预估模型. 林业科学. 2019(08): 84-94 .
    10. 全迎,李明泽,甄贞,郝元朔. 运用无人机激光雷达数据提取落叶松树冠特征因子及树冠轮廓模拟. 东北林业大学学报. 2019(11): 52-58 .
    11. 耿林,李明泽,范文义,王斌. 基于机载LiDAR的单木结构参数及林分有效冠的提取. 林业科学. 2018(07): 62-72 .
    12. 马载阳,张怀清,李永亮,杨廷栋,陈中良,李思佳. 基于空间结构的杉木树冠生长可视化模拟. 林业科学研究. 2018(04): 150-157 .
    13. 高慧淋,董利虎,李凤日. 黑龙江省红松和长白落叶松人工林树冠外部轮廓模拟. 南京林业大学学报(自然科学版). 2018(03): 10-18 .
    14. 马载阳,张怀清,李永亮,杨廷栋,彭文娥,李思佳. 林木多样性模型及生长模拟. 地球信息科学学报. 2018(10): 1422-1431 .
    15. 高慧淋,董利虎,李凤日. 基于混合效应的人工落叶松树冠轮廓模型. 林业科学. 2017(03): 84-93 .

    Other cited types(11)

Catalog

    Article views (193) PDF downloads (23) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return