• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University, 2025, 47(3): 49-60. DOI: 10.12171/j.1000-1522.20240063
Citation: Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University, 2025, 47(3): 49-60. DOI: 10.12171/j.1000-1522.20240063

Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model

More Information
  • Received Date: March 09, 2024
  • Revised Date: May 22, 2024
  • Accepted Date: January 14, 2025
  • Available Online: January 21, 2025
  • Objective 

    Pinus yunnanensis forest is one of the most important forest types in Yunnan Province of southwestern China. The application of a nonlinear mixed effects model to simulate tree height curves of Pinus yunnanensis forests is important for advancing both scientific management and accurately assessing forest quality, not only in central Yunnan Province but also across the entire Yunnan Province.

    Method 

    Based on the survey data of 9 sample plots from typical Pinus yunnanensis forests in Jiuguan Forest Farm, Chuxiong City of Yunnan Province, 12 basic models were applied to establish the relationship between tree height and DBH, and the optimal model was selected as the basic model subsequently. The species group was then used as a dummy variable, and the stand variables and random effect of sample plots were incorporated into the model, yielding a nonlinear mixed effects model of tree height-DBH in Pinus yunnanensis forests; and model fit was evaluated using leave-one-out cross-validation.

    Result 

    The Schumacher model was found to be the best of 12 basic models. Among many stand variables, the average top height (Hd) and sum of basal area larger than the subject tree (BAL) exhibited strong correlations with tree height and had biological significance; thus, both variables were chosen for constructing the generalized nonlinear model of tree height-DBH. Hd displayed a significant positive correlation with tree height, while BAL showed a negative correlation with tree height. The final nonlinear mixed effects model of Pinus yunnanensis forests accounted for 74% of the variation in tree height, with an RMSE value of 1.57 m. The results of cross-validation showed that the model was not overfitted and the residuals did not show obvious heteroscedasticity.

    Conclusion 

    In contrast to basic models established through traditional methods, this study integrated the average top height and the sum of basal area larger than the subject tree into the nonlinear mixed effects model of Pinus yunnanensis forests, which can better describe the relationship between Pinus yunnanensis forest height and DBH. Furthermore, in terms of specific forest management practices, individual competition among forest trees can be reduced to promote high growth using measures such as planting right tree for the right place, adjusting the density of forest stand and optimizing the stand’s structure. This study provides a methodological reference and technical support for the simulation studies of tree height curves in Pinus yunnanensis forests in central Yunnan Province, and has important scientific and practical value for forest resource management and ecological protection.

  • [1]
    McDill M E, Amateis R L. Measuring forest site quality using the parameters of a dimensionally compatible height growth function[J]. Forest Science, 1992, 38(2): 409−429. doi: 10.1093/forestscience/38.2.409
    [2]
    Stout B B, Shumway D L. Site quality estimation using height and diameter[J]. Forest Science, 1982, 28(3): 639−645.
    [3]
    Sullivan M J P, Lewis S L, Hubau W, et al. Field methods for sampling tree height for tropical forest biomass estimation[J]. Methods in Ecology and Evolution, 2018, 9(5): 1179−1189. doi: 10.1111/2041-210X.12962
    [4]
    Rutishauser E, Noor’an F, Laumonier Y, et al. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia[J]. Forest Ecology and Management, 2013, 307: 219−225. doi: 10.1016/j.foreco.2013.07.013
    [5]
    郭泽鑫, 胡中岳, 曹聪, 等. 广东主要森林类型林分生物量和碳储量模型研建[J]. 林业科学, 2023, 59(12): 37−50. doi: 10.11707/j.1001-7488.LYKX20230039

    Guo Z X, Hu Z Y, Cao C, et al. Stand-level models of biomass and carbon stock for major forest types in Guangdong[J]. Scientia Silvae Sinicae, 2023, 59(12): 37−50. doi: 10.11707/j.1001-7488.LYKX20230039
    [6]
    Stovall A E L, Shugart H, Yang X. Tree height explains mortality risk during an intense drought[J]. Nature Communications, 2019, 10(1): 4385. doi: 10.1038/s41467-019-12380-6
    [7]
    Sharma R P, Vacek Z, Vacek S, et al. A nonlinear mixed-effects height-to-diameter ratio model for several tree species based on Czech national forest inventory data[J]. Forests, 2019, 10(1): 70. doi: 10.3390/f10010070
    [8]
    樊伟, 许崇华, 崔珺, 等. 基于混合效应的大别山地区杉木树高−胸径模型比较[J]. 应用生态学报, 2017, 28(9): 2831−2839.

    Fan W, Xu C H, Cui J, et al. Comparisons of height-diameter models of Chinese fir based on mixed effect in Dabie Mountain area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2831−2839.
    [9]
    王宝莹, 梁瑞婷, 谢运鸿, 等. 基于非线性分位数混合效应构建杉木树高曲线模型[J]. 北京林业大学学报, 2023, 45(11): 33−41. doi: 10.12171/j.1000-1522.20220496

    Wang B Y, Liang R T, Xie Y H, et al. Construction of Cunninghamia lanceolata tree height curve model based on nonlinear quantile mixed effect[J]. Journal of Beijing Forestry University, 2023, 45(11): 33−41. doi: 10.12171/j.1000-1522.20220496
    [10]
    Curtis R O. Height-diameter and height-diameter-age equations for second-growth Douglas-fir[J]. Forest Science, 1967, 13(4): 365−375.
    [11]
    赵俊卉, 亢新刚, 张慧东, 等. 长白山3个主要针叶树种的标准树高曲线[J]. 林业科学, 2010, 46(10): 191−194. doi: 10.11707/j.1001-7488.20101032

    Zhao J H, Kang X G, Zhang H D, et al. Generalized height-diameter models for three main coniferous trees species in Changbai Mountain[J]. Scientia Silvae Sinicae, 2010, 46(10): 191−194. doi: 10.11707/j.1001-7488.20101032
    [12]
    Fortin M, van Couwenberghe R, Perez V, et al. Evidence of climate effects on the height-diameter relationships of tree species[J]. Annals of Forest Science, 2019, 76(1): 1−20. doi: 10.1007/s13595-018-0784-9
    [13]
    杜志, 陈振雄, 李锐, 等. 气候敏感的杉木树高−胸径非线性混合效应模型研建[J]. 北京林业大学学报, 2023, 45(9): 52−61. doi: 10.12171/j.1000-1522.20230052

    Du Z, Chen Z X, Li R, et al. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52−61. doi: 10.12171/j.1000-1522.20230052
    [14]
    段光爽, 李学东, 冯岩, 等. 华北落叶松天然次生林树高曲线的混合效应模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2): 163−169.

    Duan G S, Li X D, Feng Y, et al. Developing a height-diameter relationship model with mixed random effects for Larix principis-rupprechtii natural secondary forests[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(2): 163−169.
    [15]
    Ciceu A, Garcia-Duro J, Seceleanu I, et al. A generalized nonlinear mixed-effects height-diameter model for Norway spruce in mixed-uneven aged stands[J]. Forest Ecology and Management, 2020, 477: 118507. doi: 10.1016/j.foreco.2020.118507
    [16]
    Feng Y, Chai Y, Qin Y P, et al. Plant functional traits and tree size inequality improved individual tree height prediction of mid-montane humid evergreen broad-leaved forests in southwest China[J]. Forest Ecology and Management, 2024, 551: 121526. doi: 10.1016/j.foreco.2023.121526
    [17]
    沈剑波, 雷相东, 李玉堂, 等. 基于BP神经网络的长白落叶松人工林林分平均高预测[J]. 南京林业大学学报(自然科学版), 2018, 42(2): 147−154.

    Shen J B, Lei X D, Li Y T, et al. Prediction mean height for Larix olgensis plantation based on Bayesian-regularization BP neural network[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(2): 147−154.
    [18]
    董云飞, 孙玉军, 王轶夫, 等. 基于BP神经网络的杉木标准树高曲线[J]. 东北林业大学学报, 2014, 42(7): 154−156, 165.

    Dong Y F, Sun Y J, Wang Y F, et al. Generalized height-diameter model for Chinese fir based on BP neural network [J]. Journal of Northeast Forestry University, 2014, 42(7): 154−156, 165.
    [19]
    Skudnik M, Jevšenak J. Artificial neural networks as an alternative method to nonlinear mixed-effects models for tree height predictions[J]. Forest Ecology and Management, 2022, 507: 120017. doi: 10.1016/j.foreco.2022.120017
    [20]
    Ogana F N, Ercanli I. Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm[J]. Journal of Forestry Research, 2022, 33(3): 883−898. doi: 10.1007/s11676-021-01373-1
    [21]
    邓祥鹏, 许芳泽, 赵善超, 等. 基于贝叶斯法的新疆天山云杉树高−胸径模型研究[J]. 北京林业大学学报, 2023, 45(1): 11−20. doi: 10.12171/j.1000-1522.20220318

    Deng X P, Xu F Z, Zhao S C, et al. Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method[J]. Journal of Beijing Forestry University, 2023, 45(1): 11−20. doi: 10.12171/j.1000-1522.20220318
    [22]
    Zhang X, Duan A, Zhang J, et al. Estimating tree height-diameter models with the Bayesian method[J/OL]. The Scientific World Journal, 2014, 2014: 1−9 [2024−03−15]. http://dx.doi.org/10.1155/2014/683691.
    [23]
    Adamec Z, Drápela K. Generalized additive models as an alternative approach to the modelling of the tree height-diameter relationship[J]. Journal of Forest Science, 2015, 61(6): 235−243. doi: 10.17221/14/2015-JFS
    [24]
    董灵波, 邵威威, 田栋元, 等. 基于林木分级的大兴安岭天然兴安落叶松树高曲线研究[J]. 北京林业大学学报, 2023, 45(5): 88−96. doi: 10.12171/j.1000-1522.20210513

    Dong L B, Shao W W, Tian D Y, et al. Height curve of natural Larix gmelinii in the Daxing’anling Mountains of northeastern China based on forest classification[J]. Journal of Beijing Forestry University, 2023, 45(5): 88−96. doi: 10.12171/j.1000-1522.20210513
    [25]
    Zhang B, Sajjad S, Chen K, et al. Predicting tree height-diameter relationship from relative competition levels using quantile regression models for Chinese fir (Cunninghamia lanceolata) in Fujian Province, China[J]. Forests, 2020, 11(2): 183. doi: 10.3390/f11020183
    [26]
    夏洪涛, 郭晓斌, 张珍, 等. 基于不同立地质量评价指标的杉木大径材林分树高−胸径模型[J]. 中南林业科技大学学报, 2023, 43(10): 80−88.

    Xia H T, Guo X B, Zhang Z, et al. Height-diameter model of Cunninghamia lanceolata large-diameter stands based on various site quality evaluation index[J]. Journal of Central South University of Forestry & Technology, 2023, 43(10): 80−88.
    [27]
    Zhang X, Chhin S, Fu L, et al. Climate-sensitive tree height–diameter allometry for Chinese fir in southern China[J]. Forestry: An International Journal of Forest Research, 2019, 92(2): 167−176. doi: 10.1093/forestry/cpy043
    [28]
    Miranda E N, Barbosa B H G, Silva S H G, et al. Variable selection for estimating individual tree height using genetic algorithm and random forest[J]. Forest Ecology and Management, 2022, 504: 119828. doi: 10.1016/j.foreco.2021.119828
    [29]
    张鹏, 何怀江, 范春雨, 等. 吉林蛟河针阔混交林主要树种树高−胸径模型[J]. 林业科学研究, 2018, 31(2): 11−18.

    Zhang P, He H J, Fan C Y, et al. Height-diameter models of main tree species in broadleaf-conifer mixed forest in Jiaohe, Jilin, China[J]. Forest Research, 2018, 31(2): 11−18.
    [30]
    Xu Q, Lei X, Zang H, et al. Climate change effects on height–diameter allometric relationship vary with tree species and size for larch plantations in northern and northeastern China[J]. Forests, 2022, 13(3): 468. doi: 10.3390/f13030468
    [31]
    王丽娜, 吴俊文, 董琼, 等. 抚育间伐对云南松非结构性碳和化学计量特征的影响[J]. 北京林业大学学报, 2021, 43(8): 70−82. doi: 10.12171/j.1000-1522.20210115

    Wang L N, Wu J W, Dong Q, et al. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70−82. doi: 10.12171/j.1000-1522.20210115
    [32]
    廖声熙. 滇中云南松林景观格局、林分结构及近自然经营模式研究[D]. 北京: 中国林业科学研究院, 2008.

    Liao S X. Studies on the landscape pattern, stand structure and near nature management model of Pinus yunnanensis in central Yunnan, China[D]. Beijing: Chinese Academy of Forestry, 2008.
    [33]
    蒋艳, 李任波, 李玻. 云南松树高−胸径生长关系模型[J]. 内蒙古林业调查设计, 2010, 33(1): 57−59. doi: 10.3969/j.issn.1006-6993.2010.01.026

    Jiang Y, Li R B, Li B. Height-diameter growth relationship model of Pinus yunnanensis[J]. Inner Mongolia Forestry Investigation and Design, 2010, 33(1): 57−59. doi: 10.3969/j.issn.1006-6993.2010.01.026
    [34]
    罗恒春, 张超, 魏安超, 等. 云南松林分平均高生长模型及模型参数环境解释[J]. 北京林业大学学报, 2018, 40(4): 67−75.

    Luo H C, Zhang C, Wei A C, et al. Stand average height growth model and environmental interpretation in model parameter of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2018, 40(4): 67−75.
    [35]
    覃阳平, 李华, 李永亮, 等. 云南省主要针叶树种树高曲线模型研建[J]. 林业资源管理, 2019, 8(4): 46−51.

    Qin Y P, Li H, Li Y L, et al. Developing models for tree height curves of main conifer species in Yunnan Province[J]. Forest Resources Management, 2019, 8(4): 46−51.
    [36]
    路文燕, 董灵波, 田园, 等. 基于树种组成的大兴安岭天然林主要树种树高−胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157−165.

    Lu W Y, Dong L B, Tian Y, et al. Modelling height-diameter curves of main species for natural forests based on species composition in Greater Khingan Mountains, northeast China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(4): 157−165.
    [37]
    Akaike H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716−723. doi: 10.1109/TAC.1974.1100705
    [38]
    Schwarz G. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2): 461−464.
    [39]
    Stage A R. Prediction of height increment for models of forest growth[M]. Ogden: Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture, 1975: 164.
    [40]
    Wykoff W. User’s guide to the stand prognosis model[M]. Ogden: Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture, 1982: 133.
    [41]
    Bates D M, Watts D G. Relative curvature measures of nonlinearity[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1980, 42(1): 1−16. doi: 10.1111/j.2517-6161.1980.tb01094.x
    [42]
    Näslund M. Skogsförsöksanstaltens gallringsförsök i tallskog[M]. Stockholm: Meddelanden Från Statens Skogsförsöksanstalt, 1936.
    [43]
    Schumacher F X. A new growth curve and its application to timber yield studies[J]. Journal of Forestry, 1939, 37(11): 819−820.
    [44]
    Ratkowsky D A. Handbook of non-linear regression models[M]. New York: Marcel Dekker, 1990.
    [45]
    Winsor C P. The Gompertz curve as a growth curve[J]. Proceedings of the National Academy of Sciences, 1932, 18(1): 1−8. doi: 10.1073/pnas.18.1.1
    [46]
    Yang R C, Kozak A, Smith J H G. The potential of Weibull-type functions as flexible growth curves[J]. Canadian Journal of Forest Research, 1978, 8(4): 424−431. doi: 10.1139/x78-062
    [47]
    Richards F J. A flexible growth function for empirical use[J]. Journal of Experimental Botany, 1959, 10(2): 290−301. doi: 10.1093/jxb/10.2.290
    [48]
    Peschel W. Mathematical methods for growth studies of trees and forest stands and the results of their application[J]. Tharandter Forstliches Jahrburch, 1938, 89: 169−247.
    [49]
    Lundqvist B. On the height growth in cultivated stands of pine and spruce in northern Sweden[J]. Medd Fran Statens Skogforsk, 1957, 47(2): 1−64.
    [50]
    Long J N, Daniel T W. Assessment of growing stock in uneven-aged stands[J]. Western Journal of Applied Forestry, 1990, 5(3): 93−96. doi: 10.1093/wjaf/5.3.93
    [51]
    Huang S, Wiens D P, Yang Y, et al. Assessing the impacts of species composition, top height and density on individual tree height prediction of quaking aspen in boreal mixedwoods[J]. Forest Ecology and Management, 2009, 258(7): 1235−1247. doi: 10.1016/j.foreco.2009.06.017
    [52]
    孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006: 43−59.

    Meng X Y. Forest mensuration[M]. 3rd ed. Beijing: China Forestry Publishing House, 2006: 43−59.
    [53]
    Ouzennou H, Pothier D, Raulier F. Adjustment of the age-height relationship for uneven-aged black spruce stands[J]. Canadian Journal of Forest Research, 2008, 38(7): 2003−2012. doi: 10.1139/X08-044
    [54]
    张金屯. 数量生态学[M]. 3版. 北京: 科学出版社, 2018: 106−112.

    Zhang J T. Numerical ecology[M]. 3rd ed. Beijing: Science Press, 2018: 106−112.
    [55]
    Ouyang S, Xiang W H, Wang X P, et al. Effects of stand age, richness and density on productivity in subtropical forests in China[J]. Journal of Ecology, 2019, 107(5): 2266−2277. doi: 10.1111/1365-2745.13194
    [56]
    Lexerød N L, Eid T. An evaluation of different diameter diversity indices based on criteria related to forest management planning[J]. Forest Ecology and Management, 2006, 222(1−3): 17−28. doi: 10.1016/j.foreco.2005.10.046
    [57]
    Clark P J, Evans F C. Distance to nearest neighbor as a measure of spatial relationships in populations[J]. Ecology, 1954, 35(4): 445−453. doi: 10.2307/1931034
    [58]
    惠刚盈. 角尺度: 一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1): 39−44.

    Hui G Y. The neighbourhood pattern-a new structure parameter for describing distribution of forest tree position[J]. Scientia Silvae Sinicae, 1999, 35(1): 39−44.
    [59]
    Lindstrom M J, Bates D M. Nonlinear mixed effects models for repeated measures data[J]. Biometrics, 1990, 46(3): 673. doi: 10.2307/2532087
    [60]
    Meng S X, Huang S. Improved calibration of nonlinear mixed-effects models demonstrated on a height growth function[J]. Forest Science, 2009, 55(3): 238−248. doi: 10.1093/forestscience/55.3.238
    [61]
    Calama R, Montero G. Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach[J]. Silva Fennica, 2005, 39(1): 37−54.
    [62]
    Crecente-Campo F, Tomé M, Soares P, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2010, 259(5): 943−952. doi: 10.1016/j.foreco.2009.11.036
    [63]
    Ogana F N, Gorgoso-Varela J J. A nonlinear mixed-effects tree height prediction model: Application to Pinus pinaster Ait in Northwest Spain[J]. Trees, Forests and People, 2020, 1: 100003. doi: 10.1016/j.tfp.2020.100003
    [64]
    Pinheiro J, Bates D, DebRoy S, et al. Nlme: linear and nonlinear mixed effects models[EB/OL]. (2023−11−27) [2024−04−08]. https://cran.r-project.org/web/packages/nlme/index.html.
    [65]
    Hunter J D. Matplotlib: a 2D graphics environment[J]. Computing in Science & Engineering, 2007, 9(3): 90−95.
    [66]
    臧颢, 雷相东, 张会儒, 等. 红松树高−胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6): 8−16.

    Zang H, Lei X D, Zhang H R, et al. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8−16.
    [67]
    Sharma R P, Vacek Z, Vacek S, et al. Modelling individual tree height-diameter relationships for multi-layered and multi-species forests in central Europe[J]. Trees, 2019, 33(1): 103−119. doi: 10.1007/s00468-018-1762-4
    [68]
    Fu L, Sharma R P, Hao K, et al. A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China[J]. Forest Ecology and Management, 2017, 389: 364−373. doi: 10.1016/j.foreco.2016.12.034
    [69]
    Patrício M S, Dias C R G, Nunes L. Mixed-effects generalized height-diameter model: a tool for forestry management of young sweet chestnut stands[J]. Forest Ecology and Management, 2022, 514: 120209. doi: 10.1016/j.foreco.2022.120209
    [70]
    杨惠滨, 国庆喜. 地形与竞争因子对红松胸径与年龄关系的影响[J]. 生态学报, 2016, 36(20): 6487−6495.

    Yang H B, Guo Q X. Influence of topography and competitive factors on the relationship between DBH and of Korean pine[J]. Acta Ecologica Sinica, 2016, 36(20): 6487−6495.
    [71]
    李春明. 基于Cox比例风险函数及混合效应的落叶松云冷杉混交林林木枯损模型研究[J]. 林业科学研究, 2020, 33(3): 92−98.

    Li C M. Mortality model of Larix olgensis-Abies nephrolepis-Picea jazoensis mixed stands based on cox proportional hazard function and mixed effect model[J]. Forest Research, 2020, 33(3): 92−98.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return