• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Xiangchun, Tao Jing, Li Xinyu, Zong Shixiang. Identification and molecular docking of odorant-degrading enzyme genes in Hylurgus ligniperda[J]. Journal of Beijing Forestry University, 2025, 47(2): 79-94. DOI: 10.12171/j.1000-1522.20240102
Citation: Li Xiangchun, Tao Jing, Li Xinyu, Zong Shixiang. Identification and molecular docking of odorant-degrading enzyme genes in Hylurgus ligniperda[J]. Journal of Beijing Forestry University, 2025, 47(2): 79-94. DOI: 10.12171/j.1000-1522.20240102

Identification and molecular docking of odorant-degrading enzyme genes in Hylurgus ligniperda

More Information
  • Received Date: April 06, 2024
  • Revised Date: May 21, 2024
  • Accepted Date: December 04, 2024
  • Available Online: January 22, 2025
  • Objective 

    This paper aims to screen, classify, and analyze the tissue expression of odor degradation enzyme-related genes in Hylurgus ligniperda. The results of this study will provide a theoretical foundation for utilizing molecular biology techniques to effectively regulate the behavior of Hylurgus ligniperda.

    Method 

    Key odor-degrading enzyme genes were screened from the whole-genome data of Dendroctonus longipennis. Phylogenetic analysis of the genes and tissue expression analysis of the adults were conducted. Homology modeling was used to predict the three-dimensional structure of the odor-degrading enzyme genes. After the rationality of the model structure was evaluated, molecular docking simulation was performed using Autodock1.5.7 software.

    Result 

    The analysis revealed a total of 65 potential odor degradation enzyme genes within the complete genome data of Hylurgus ligniperda. Among them, 11 were identified as glutathione S-transferase genes, 46 as cytochrome P450 genes, and 8 as esterase genes. The phylogenetic analysis displayed a relatively conserved nature of odor degradation enzyme genes in Hylurgus ligniperda. Furthermore, the gene expression distribution in adult beetle tissues indicated that odor degradation enzyme-related genes were predominantly expressed in the antennae, with higher levels of expression observed in the glutathione S-transferase and cytochrome P450 gene families. Notably, the molecular docking results demonstrated that the binding energies between the odor degradation enzymes of Hylurgus ligniperda and various odor molecules were consistently low and exhibited minimal differences, indicating a stable intermolecular interaction force.

    Conclusion 

    The significant expression of glutathione S-transferase and cytochrome P450 genes in antennae of Hylurgus ligniperda reinforces their vital role in odor degradation. Furthermore, the molecular docking results confirm the universal ability of odor degradation enzyme genes of Hylurgus ligniperda in breaking down odor molecules, with similar intermolecular binding modes observed.

  • [1]
    任利利, 武海卫, 宗世祥, 等. 重大害虫长林小蠹入侵我国的首次发现与侵染特征[J]. 林业科学, 2021, 57(5): 140−150. doi: 10.11707/j.1001-7488.20210513

    Ren L L, Wu H W, Zong S X, et al. The first discovery and infective characteristics of a major invasive pest Hylurgus ligniperda (Coleoptera: Scolytidae) in China[J]. Scientia Silvae Sinicae, 2021, 57(5): 140−150. doi: 10.11707/j.1001-7488.20210513
    [2]
    李承锦, 赵文霞, 淮稳霞, 等. 我国新入侵害虫长林小蠹研究进展[J]. 环境昆虫学报, 2023, 45(4): 850−861. doi: 10.3969/j.issn.1674-0858.2023.04.2

    Li C J, Zhao W X, Huai W X, et al. Research progress on Hylurgus ligniperda Fabricius (Coleoptera: Curculionidae), a new invasive species in China[J]. Journal of Environmental Entomology, 2023, 45(4): 850−861. doi: 10.3969/j.issn.1674-0858.2023.04.2
    [3]
    Gomez D, Hirigoyen A, Balmelli G, et al. Patterns in flight phenologies of bark beetles (Coleoptera: Scolytinae) in commercial pine tree plantations in Uruguay[J]. Bosque, 2017, 38(1): 47−53. doi: 10.4067/S0717-92002017000100006
    [4]
    Pawson S M, Kerr J L, Somchit C, et al. Flight activity of wood and bark boring insects at New Zealand ports[J]. New Zealand Journal of Forestry Science, 2020, 50: 1−11.
    [5]
    Huanquilef C, Espinoza J, Mutis A, et al. Antifeedant activities of organic fractions from cestrum parqui leaves on the red-haired bark beetle Hylurgus ligniperda[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 13−21. doi: 10.1007/s42729-020-00327-6
    [6]
    Pugh A R, Romo C M, Clare G K, et al. Temperature effects on the survival and development of two pest bark beetles Hylurgus ligniperda F. (Coleoptera: Curculionidae) and Hylastes ater Paykull (Coleoptera: Curculionidae)[J]. Environmental Entomology, 2023, 52(1): 56−66. doi: 10.1093/ee/nvac094
    [7]
    Baldwin S R, Mohapatra P, Nagalla M, et al. Identification and characterization of CYPs induced in the drosophila antenna by exposure to a plant odorant[J]. Scientific Reports, 2021, 11(1): 20530. doi: 10.1038/s41598-021-99910-9
    [8]
    Blomquist G J, Tittiger C, MacLean M, et al. Cytochromes P450: terpene detoxification and pheromone production in bark beetles[J]. Current Opinion in Insect Science, 2021, 43: 97−102. doi: 10.1016/j.cois.2020.11.010
    [9]
    Wang G R, Guo Y Y, Wu K M. Cloning of a cDNA fragment of an antenna-specific gene in Helicoverpa armigera[J]. Chinese Journal of Agricultural Biotechnology, 2004, 1(1): 37−43. doi: 10.1079/CJB20048
    [10]
    Ono H, Ozaki K, Yoshikawa H. Identification of cytochrome P450 and glutathione-S-transferase genes preferentially expressed in chemosensory organs of the swallowtail butterfly Papilio xuthus L.[J]. Insect Biochemistry and Molecular Biology, 2005, 35(8): 837−846. doi: 10.1016/j.ibmb.2005.03.013
    [11]
    Snyder M J, Stevens J L, Andersen J F. Expression of cytochrome P450 genes of the CYP4 family in midgut and fat body of the tobacco hornworm, Manduca sexta[J]. Archives of Biochemistry and Biophysics, 1995, 321(1): 13−20. doi: 10.1006/abbi.1995.1362
    [12]
    Wojtasek H, Leal W S. Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes[J]. Journal of Biological Chemistry, 1999, 274(43): 30950−30956. doi: 10.1074/jbc.274.43.30950
    [13]
    Zhang L, Shen Y, Jiang X, et al. Transcriptomic identification and expression profile analysis of odorant-degrading enzymes from the asian corn borer moth Ostrinia furnacalis[J]. Insects, 2022, 13(11): 1027−1045. doi: 10.3390/insects13111027
    [14]
    Zhang Y X, Wang W L, Li M Y, et al. Identification of putative carboxylesterase and aldehyde oxidase genes from the antennae of the rice leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)[J]. Journal of Asia-Pacific Entomology, 2017, 20(3): 907−913. doi: 10.1016/j.aspen.2017.06.001
    [15]
    Sledz P, Caflisch A. Protein structure-based drug design: from docking to molecular dynamics[J]. Current Opinion in Structural Biology, 2018, 48: 93−102. doi: 10.1016/j.sbi.2017.10.010
    [16]
    Smach M A, Hafsa J, Abdallah J B, et al. Neuroprotective and anti-amnesic effects of Laurus nobilis essential oil against scopolamine-induced memory deficits in mice brain[J]. Journal of Ethnopharmacology, 2024, 319(Pt1): 117151.
    [17]
    Ma Y F, Gong L L, Zhang M Q, et al. Two antenna-enriched carboxylesterases mediate olfactory responses and degradation of ester volatiles in the German cockroach Blattella germanica[J]. Journal of Agricultural and Food Chemistry, 2023, 71(12): 4789−4801. doi: 10.1021/acs.jafc.2c08488
    [18]
    Lam-Tung N, Schmidt H A, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268−274.
    [19]
    Ishida Y, Leal W S. Cloning of putative odorant-degrading enzyme and integumental esterase cDNAs from the wild silkmoth, Antheraea polyphemus[J]. Insect Biochemistry and Molecular Biology, 2002, 32(12): 1775−1780. doi: 10.1016/S0965-1748(02)00136-4
    [20]
    Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server[J]. Nucleic Acids Research, 2003, 31(13): 3381−3385. doi: 10.1093/nar/gkg520
    [21]
    Hollingsworth S A, Karplus P A. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins[J]. Biomolecular Concepts, 2010, 1(3−4): 271−283. doi: 10.1515/bmc.2010.022
    [22]
    Dai L, Ma J, Ma M, et al. Characterisation of GST genes from the Chinese white pine beetle Dendroctonus armandi (Curculionidae: Scolytinae) and their response to host chemical defence[J]. Pest Management Science, 2016, 72(4): 816−827. doi: 10.1002/ps.4059
    [23]
    Dai L, Gao H, Chen H. Expression levels of detoxification enzyme genes from Dendroctonus armandi (Coleoptera: Curculionidae) fed on a solid diet containing pine phloem and terpenoids[J]. Insects, 2021, 12(10): 1−11.
    [24]
    Li W, Yang B, Liu N, et al. Identification and characterization of the detoxification genes based on the transcriptome of Tomicus yunnanensis[J]. Diversity-Basel, 2022, 14(1): 110431.
    [25]
    Leal W S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes[J]. Annual Review of Entomology, 2013, 58: 373−391. doi: 10.1146/annurev-ento-120811-153635
    [26]
    Merlin C, Francois M C, Bozzolan F, et al. A new aldehyde oxidase selectively expressed in chemosensory organs of insects[J]. Biochemical and Biophysical Research Communications, 2005, 332(1): 4−10. doi: 10.1016/j.bbrc.2005.04.084
    [27]
    Pelletier J, Bozzolan F, Solvar M, et al. Identification of candidate aldehyde oxidases from the silkworm Bombyx mori potentially involved in antennal pheromone degradation[J]. Gene, 2007, 404: 31−40. doi: 10.1016/j.gene.2007.08.022
    [28]
    Chertemps T, Younus F, Pearce S, et al. Odorant-degrading enzymes in Drosophila melanogaster[J]. Chemical Senses, 2015, 40(3): 214.
    [29]
    He P, Zhang Y N, Yang K, et al. An antenna-biased carboxylesterase is specifically active to plant volatiles in Spodoptera exigua[J]. Pesticide Biochemistry and Physiology, 2015, 123: 93−100. doi: 10.1016/j.pestbp.2015.03.009
    [30]
    Sun L, Wang Q, Wang Q, et al. Identification and expression patterns of putative diversified carboxylesterases in the tea geometrid ectropis obliqua prout[J]. Frontiers in Physiology, 2017, 8: 1−13.
    [31]
    Wei H, Tan S, Li Z, et al. Odorant degrading carboxylesterases modulate foraging and mating behaviors of Grapholita molesta[J]. Chemosphere, 2021, 270: 128647. doi: 10.1016/j.chemosphere.2020.128647
    [32]
    Durand N, Carot-Sans G, Bozzolan F, et al. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis[J]. PLoS One, 2011, 6(12): e29147. doi: 10.1371/journal.pone.0029147
    [33]
    Durand N, Chertemps T, Carot-Sans G, et al. In vitro characterization of two antennal odorant-degrading enzymes in the noctuid moth Spodoptera littoralis[J]. Chemical Senses, 2011, 36(1): E65−E66.
    [34]
    Chertemps T, Francois A, Durand N, et al. A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila[J/OL]. BMC Biology, 2012, 10[2024−02−19]. http://www.biomedcentral.com/1741-7007/10/56.
    [35]
    Steiner C, Bozzolan F, Montagne N, et al. Neofunctionalization of “Juvenile Hormone esterase duplication” in drosophila as an odorant-degrading enzyme towards food odorants[J/OL]. Scientific Reports, 2017, 7[2024−02−15]. https://www.nature.com/articles/s41598-017-13015-w.
    [36]
    Shangguan C, Kuang Y, Gao L, et al. Antennae-enriched expression of candidate odorant degrading enzyme genes in the turnip aphid, Lipaphis erysimi[J/OL]. Frontier in Physiology, 2023, 14: 1228570[2024−02−14]. https://doi.org/10.1002/arch.22022.
    [37]
    Bohbot J, Vogt R G. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.) characterization of odorant-binding protein 10 and takeout[J]. Insect Biochemistry and Molecular Biology, 2004, 35(9): 961−979.
  • Cited by

    Periodical cited type(7)

    1. 刘巧娟,张之松,满秀玲,高明磊,赵佳龙. 寒温带多年冻土区不同林龄白桦林土壤酶活性动态特征. 东北林业大学学报. 2024(03): 125-131 .
    2. 高海燕,杨制国,张胜男,黄海广,闫德仁. 科尔沁沙地油松人工林林龄对土壤酶活性及化学性质的影响. 中南林业科技大学学报. 2024(02): 108-117 .
    3. 赵娜,沈爱红,石云,佘洁,张风红,郭瑞,吴涛,李建华,朱晓雯,李红霞. 贺兰山东麓冲积扇区不同微地形土壤理化性质及酶活性特征. 西南农业学报. 2023(11): 2451-2463 .
    4. 伍晓丽,潘媛,赵晓,谭均,陈大霞. 玄参与烟草轮作对根际土壤养分、酶活性及微生物群落结构的影响. 西南农业学报. 2022(01): 58-64 .
    5. 王小燕,姚宝辉,张彩军,王缠,孙小妹,苏军虎. 甘南“黑土滩”型退化草甸土壤理化特性及酶活性季节变化. 草地学报. 2021(02): 220-227 .
    6. 张亚,张文静,杨礼通,雷应雪,杨丽,蔡晓林,梁清,肖玖金. 火烧迹地不同植被恢复下土壤团聚体酶活性特征. 四川农业大学学报. 2021(01): 79-85 .
    7. 刘金炽,招礼军,朱栗琼,权佳惠,金赟. 喀斯特地区泡核桃林土壤酶、微生物量及无机氮的动态研究. 广东农业科学. 2020(10): 83-92 .

    Other cited types(12)

Catalog

    Article views (78) PDF downloads (27) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return