• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hu Yaofang, Li Ao, Yin Jiahui, Wang Yuancheng, Zou Junzhu, Ju Guansheng, Liu Junxiang, Sun Zhenyuan. Transcriptome based ABA mediated dehydration response of Salix matsudana branches[J]. Journal of Beijing Forestry University, 2025, 47(3): 19-27. DOI: 10.12171/j.1000-1522.20240103
Citation: Hu Yaofang, Li Ao, Yin Jiahui, Wang Yuancheng, Zou Junzhu, Ju Guansheng, Liu Junxiang, Sun Zhenyuan. Transcriptome based ABA mediated dehydration response of Salix matsudana branches[J]. Journal of Beijing Forestry University, 2025, 47(3): 19-27. DOI: 10.12171/j.1000-1522.20240103

Transcriptome based ABA mediated dehydration response of Salix matsudana branches

More Information
  • Received Date: April 06, 2024
  • Revised Date: June 23, 2024
  • Accepted Date: January 09, 2025
  • Available Online: January 12, 2025
  • Objective 

    ABA is a key hormone for drought stress in plants. This study aimed to explore the key functional genes and related pathways for ABA-mediated dehydrated response of Salix matsudana for breeding superior drought-resistant varieties through molecular design breeding.

    Method 

    In this study, we investigated the differential response of xylem transcriptome of S. matsudana branches dehydrated to varied water potentials after being soaked in the sodium tungstate (ABA synthesis inhibitor) solution by transcriptome sequencing, using S. matsudana isolated branches as materials.

    Result 

    (1) There were 5 672 significantly different genes between the deionized water-soaked S. matsudana non-dehydrated branches and those dehydrated to P50 water potential branches, and 5 033 significantly different genes between the sodium tungstate solution-soaked branches and deionized water-soaked dehydrated to P50 water potential branches. (2) Plant hormone signal transduction, carotenoid biosynthesis and starch and sucrose metabolism pathways were key pathways in the dehydrated response of S. matsudana branches after being soaked in the sodium tungstate solution. (3) Soaking Salix matsudana in deionized water until P50 water potential resulted in significantly increased expression levels of PP2C family genes (P2C03, P2C51), ABA receptor regulatory component genes (PYL8), and ABA response element binding protein genes (AI5L5) in the plant hormone signaling pathway compared with non dehydrated branches. In the biosynthesis pathway of carotenoids, the expression levels of carotenoid isomerase gene (CRTSO) and abscisic aldehyde oxidase gene 3 (ALDO3) were significantly upregulated. In the starch and sucrose metabolism pathways, the expression levels of glycosyl hydrolase family genes (INVA, E133), α - amylase like 3 gene (AMY3), trehalose phosphatase gene (TPS5), sucrose phosphate synthase 1 gene (SPSA1), etc. were significantly upregulated, while the expression level of starch synthase gene (SSY1) was significantly downregulated. The related genes were opposite expressed in the dehydrated branches of S. matsudana after being soaked in the sodium tungstate solution.

    Conclusion 

    In this study, the drought stress-related pathways and the important functional genes of S. matsudana are explored, which provides the research basis for revealing drought stress response of S. matsudana.

  • [1]
    Giorgi F, Lionello P. Climate change projections for the Mediterranean region[J]. Global Planetary Change, 2008, 63: 90−104. doi: 10.1016/j.gloplacha.2007.09.005
    [2]
    Gupta A, Rico-Medina A, Cao-Delgado A I. The physiology of plant responses to drought[J]. Science, 2020, 368: 266−269.
    [3]
    邵艳军, 山仑. 植物耐旱机制研究进展[J]. 中国生态农业学报, 2006, 14(4): 16−20.

    Shao Y J, Shan L. Advances in the studies on drought tolerance mechanism of plants[J]. Chinese Journal of Eco-Agriculture, 2006, 14(4): 16−20.
    [4]
    Deyholos M, Ozturk Z N, Talame V, et al. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley[J]. Plant Molecular Biology, 2002, 48(5): 551−573.
    [5]
    Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a fulllength cDNA microarray[J]. The Plant Journal: for Cell and Molecular Biology, 2002, 31(3): 279−292. doi: 10.1046/j.1365-313X.2002.01359.x
    [6]
    Rabbani M, Maruyama K, Abe H, et al. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses[J]. Plant Physiology, 2003, 133(4): 1755−1767. doi: 10.1104/pp.103.025742
    [7]
    Priest H D, Fox S E, Rowley E R, et al. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress[J]. PLoS One, 2014, 9(1): e87499. doi: 10.1371/journal.pone.0087499
    [8]
    王洁. 干旱胁迫马铃薯叶片转录组分析[D]. 兰州: 甘肃农业大学, 2014.

    Wang J. Transciptome analysis of potato leaves under drought stress[D]. Lanzhou: Gansu Agricultural University, 2014.
    [9]
    郭贵华, 刘海艳, 李刚华,等. ABA缓解水稻孕穗期干旱胁迫生理特性的分析[J]. 中国农业科学, 2014, 47(22): 4380−4391. doi: 10.3864/j.issn.0578-1752.2014.22.004

    Guo G H, Liu H Y, Li G H, et al. Analysis of physiological characteristics about ABA alleviating rice booting stage drought stress[J]. Scientia Agricultura Sinica, 2014, 47(22): 4380−4391. doi: 10.3864/j.issn.0578-1752.2014.22.004
    [10]
    王玮, 张枫, 李德全. 外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响[J]. 作物学报, 2002, 28(1): 121−126. doi: 10.3321/j.issn:0496-3490.2002.01.024

    Wang W, Zhang F, Li D Q. The effects of exogenous ABA on osmotic adjustment in maize roots under osmotic stress[J]. Acta Agronomica Sinica, 2002, 28(1): 121−126. doi: 10.3321/j.issn:0496-3490.2002.01.024
    [11]
    宋润先, 李翔, 毛秀红,等. 镉胁迫下美洲黑杨无性系‘中菏 1 号’转录组分析[J]. 北京林业大学学报, 2021, 43(7): 12−21. doi: 10.12171/j.1000-1522.20210037

    Song R X, Li X, Mao X H, et al. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12−21. doi: 10.12171/j.1000-1522.20210037
    [12]
    张子蕤. 黄腐酸对镉和干旱胁迫下旱柳生理特性及抗逆基因表达的影响[D]. 沈阳: 辽宁大学, 2022.

    Zhang Z R. Effects of fulvic acid on physiological characteristics and resistance gene expression of Salix matsudana Koidz under cadmium and drought stress[D]. Shenyang: Liaoning University, 2022.
    [13]
    Lu Q, Shao F J, Ma C, et al. Genome-wide analysis of the lateral organ boundaries domain gene family in Eucalyptus grandis reveal[J]. Plant Biotechnology Journal, 2018, 16(1): 124−136. doi: 10.1111/pbi.12754
    [14]
    Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53: 247−273. doi: 10.1146/annurev.arplant.53.091401.143329
    [15]
    Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future[J]. Plant Journal, 2010, 61: 1041−1052. doi: 10.1111/j.1365-313X.2010.04124.x
    [16]
    Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress[J]. Plant Cell, 2002, 14(Suppl.): 165−183.
    [17]
    Hu H, Xiong L. Genetic engineering and breeding of drought-resistantcrops[J]. Annual Review of Plant Biology, 2014, 65: 715−741. doi: 10.1146/annurev-arplant-050213-040000
    [18]
    Milborrow B V. The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis[J]. Journal of Experimental Botany, 2001, 359: 1145−1164.
    [19]
    Hansen H, Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition[J]. Plant Physiology, 2000, 124(3): 1437−1448. doi: 10.1104/pp.124.3.1437
    [20]
    Ma Y, He J, Ma C, et al. Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens[J]. Plant Cell Environ, 2014, 37(3): 627. doi: 10.1111/pce.12183
    [21]
    Bensari M, Calmés J, Viala G. Water deficit and distribution of photosynthetic carbon between sucrose and starch[J]. Acta Oecol, 1990, 11(6): 843−855.
    [22]
    赵晶晶, 姚珊, 李昱, 等. 花后干旱对春小麦籽粒淀粉含量及淀粉形成关键酶活性的影响[J]. 干旱地区农业研究, 2015, 33(6): 104−110. doi: 10.7606/j.issn.1000-7601.2015.03.17

    Zhao J J, Yao S, Li Y, et al. Effects of drought on the starch contents and activities of key enzymes after anthesis in spring wheat grains[J]. Agricultural Research in the Arid Areas, 2015, 33(6): 104−110. doi: 10.7606/j.issn.1000-7601.2015.03.17
    [23]
    Rudack K, Seddig S, Sprenger H, et al. Drought stress-induced changes in starch yield and physiological traits in potato[J]. Journal of Agronomy and Crop Science, 2017, 203(6): 494−505.
    [24]
    张大鹏, 罗国光. 不同时期水分胁迫对葡萄果实生长发育的影响[J]. 园艺学报, 1992, 19(4): 296−300. doi: 10.3321/j.issn:0513-353X.1992.04.017

    Zhang D P, Luo G G. Effect of water stress at different periods on the growth and development of grape berries[J]. Acta Horticulturae Sinica, 1992, 19(4): 296−300. doi: 10.3321/j.issn:0513-353X.1992.04.017
    [25]
    王有年, 张海英, 杨爱珍,等. 水杨酸对桃贮藏期脂氧合酶(LOX)活性及其品质的影响[C]//中国园艺学会.中国园艺学会第九届学术年会论文集. 北京:中国科学技术出版社, 2001.

    Wang Y N, Zhang H Y, Yang A Z, et al. Effects of salicylic acid on the activity and quality of lipoxygenase (LOX) in peach during storage[C]// Chinese Society for Horticultural Science. Proceedings of the 9th Annual Academic Conference of Chinese Society for Horticultural Science. Beijing: Science and Technology of China Press, 2001.
    [26]
    赵超, 王海燕, 刘美珍,等. 干旱胁迫下木薯茎秆可溶性糖、淀粉及相关酶的代谢规律[J]. 植物生理学报, 2017, 53(5): 795−806.

    Zhao C, Wang H Y, Liu M Z, et al. Effect of drought on the contents of soluble sugars, starch and enzyme activities in cassava stem[J]. Plant Physiology Journal, 2017, 53(5): 795−806.
    [27]
    陈翠云, 赵昕, 李新荣. 干旱胁迫下牛心朴子的渗透调节机制研究[J]. 中国沙漠, 2012, 32(5): 1275−1282.

    Chen C Y, Zhao X,Li X R. Osmotic adjustment mechanism of Cynanchum komarovii under drought stress[J]. Journal of Desert Research, 2012, 32(5): 1275−1282.
    [28]
    项阳, 刘延波, 秦利军, 等. 酵母 TPS1 基因促进干旱胁迫下玉米的根系生长[J]. 植物生理学报, 2015, 51(3): 363−369.

    Xiang Y, Liu Y B, Qin L J, et al. Trehalose-6-phosphate synthase gene TPS1 from Saccharomyces cerevisiae improve root growth in transgenic maize under drought stress[J]. Plant Physiology Journal, 2015, 51(3): 363−369.
    [29]
    Han B Y, Fu L L, Zhang D, et al. Interspecies and intraspecies analysis of trehalose contents and the biosynthesis pathway gene family reveals crucial roles of trehalose in osmotic-stress tolerance in cassava[J]. International Journal of Molecular Sciences, 2016, 17(7): 1077−1095. doi: 10.3390/ijms17071077
    [30]
    Pattanagul W. Exogenous abscisic acid enhances sugar accumulation in rice (Oryza sativa L.) under drought stress[J]. Asian Journal of Plant Sciences, 2011, 10(3): 212−219. doi: 10.3923/ajps.2011.212.219
  • Cited by

    Periodical cited type(6)

    1. 林鸿裕,卢桂宁. 基于模糊逻辑综合评判的垃圾处理厂选址仿真. 计算机仿真. 2024(01): 513-517 .
    2. 刘子晴,葛韵宇. 北京第二道绿化隔离地区空间潜力分析及郊野公园选址研究. 北京规划建设. 2024(01): 40-45 .
    3. 黄友慧,辛儒鸿,李凯. 红枫湖镇生态环境质量评价及修复优先区识别研究. 西南林业大学学报(自然科学). 2024(04): 64-72 .
    4. 王菲,孙晨,姜雁林,马晓燕,冯丽. 北京市第二道绿化隔离带地区生态敏感性评价. 北京农学院学报. 2023(02): 105-110 .
    5. 刘烨琪. 基于情景规划的杭州郊野公园选址研究. 现代园艺. 2023(19): 99-102 .
    6. 葛韵宇,李雄. 基于碳汇和游憩服务协同提升的北京市第二道绿化隔离地区郊野公园环空间布局优化. 北京林业大学学报. 2022(10): 142-154 . 本站查看

    Other cited types(8)

Catalog

    Article views (116) PDF downloads (24) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return