Citation: | Liang Longyue, Zhang Jianjun, Li Yang, Hu Yawei, Zhao Jiongchang, Yang Zhou. Response of radial growth of artificial Pinus tabuliformis plantations to climate change in loess area of western Shanxi Province[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240140 |
Pinus tabuliformis is an important tree species for soil and water conservation on the Loess Plateau. Studying the response of the radial growth of P. tabuliformis to climate factors is beneficial for deeply understanding the adaptability of P. tabuliformis plantations to climate change. Moreover, it can provide a basis for the management and response to climate change of existing P. tabuliformis plantations.
This study took the P. tabuliformis plantation in the Caijiachuan Basin, Jixian County, Shanxi Province as the research object. Tree - disk samples of 49 P. tabuliformis trees were collected. Based on the characteristics of the change in the radial growth rate of trees with age, the growth process of P. tabuliformis was divided into three stages: the rapid - growth stage (< 7 years), the growth - decline stage (8−27 years), and the growth - plateau stage (> 28 years). By establishing a standardized tree - ring width chronology, the inter - annual variation characteristics of the radial growth of P. tabuliformis were analyzed, and the response laws of the radial growth of P. tabuliformis to climate factors at different growth stages were identified.
(1) During the entire growth cycle, the radial growth of P. tabuliformis is mainly affected by the temperature factors in March and June of the current year, as well as the relative humidity in May of the previous year and March of the current year. For P. tabuliformis in the rapid growth stage, its radial growth is mainly affected by the precipitation in March of the current year, and the relative humidity in March of the previous year and January of the current year. For those in the growth decline stage, the radial growth of P. tabuliformis is mainly influenced by the temperature factors in March, May - July of the previous year and the current year, as well as the minimum temperature in August - September of the previous year and the current year. For P. tabuliformis in the growth plateau stage, there is no significant correlation between its radial growth and various climate factors. The results of the sliding correlation analysis show that the sensitivity of P. tabuliformis in the rapid growth stage to the maximum temperature and precipitation decreases, and the sensitivity of P. tabuliformis in the growth decline stage to the minimum temperature and relative humidity weakens. (2) Before the abrupt change of temperature, the radial growth of P. tabuliformis in the rapid growth stage and the growth decline stage was significantly affected by precipitation and relative humidity (P < 0.05). After the abrupt change of temperature, the sensitivity of the radial growth of P. tabuliformis in the rapid growth stage to precipitation and relative humidity increased. However, the sensitivity of the radial growth of P. tabuliformis in the growth decline stage to precipitation and relative humidity decreased, while the sensitivity to temperature factors increased.
The research reveals that there are differences in the sensitivity of P. tabuliformis plantations at different growth stages to the response of climate factors. Under the background of future climate warming, it provides a scientific basis for the sustainable management of P. tabuliformis at each growth stage.
[1] |
陈俣霏, 韩玉国, 孙明东, 等. 基于CMIP6气候模式对长江流域四川段的未来降水变化预估与分析[J]. 水土保持研究, 2024, 31(5): 288−294.
Chen Y F, Han Y G, Sun M D, et al. Prediction and analysis of future precipitation changes in the Sichuan Section of the Yangtze River Basin Based on the CMIP6 climate model[J]. Research of Soil and Water Conservation, 2024, 31(5): 288−294.
|
[2] |
刘国华, 傅伯杰. 全球气候变化对森林生态系统的影响[J]. 自然资源学报, 2001, 16(1): 71−78.
Liu G H, Fu B J. Effects of global climate change on forest ecosystems[J]. Journal of Natural Resources, 2001, 16(1): 71−78.
|
[3] |
Gou X H, Deng Y, Chen F H, et al. Tree ring based streamlow rconstruclion for the upper Yellow River over the past 1234 years[J]. Chinese Science Blletin, 2010, 55(33): 3236−3243. doi: 10.1360/csb2010-55-33-3236
|
[4] |
陈列, 高露双, 张赟, 等. 长白山北坡不同林型内红松年表特征及其与气候因子的关系[J]. 生态学报, 2013, 33(4): 1285−1291. doi: 10.5846/stxb201209181309
Chen L, Gao L S, Zhang B, et al. Characteristics of tree-ring chronology of Pinus koraiensis and its relationship with climate factors on the northern slope of Changbai Mountain[J]. Acta Ecologica Sinica, 2013, 33(4): 1285−1291. doi: 10.5846/stxb201209181309
|
[5] |
彭剑峰, 勾晓华, 陈发虎, 等. 阿尼玛卿山不同海拔祁连圆柏树轮宽度年表特征对比分析[J]. 冰川冻土, 2006, 28(5): 713−721.
Peng J F, Gou X H, Chen F H, et al. The characteristics of tree-ring width of Sabina przewalskii Kom for different elevations in the A'nyêmaqên Mountains[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 713−721.
|
[6] |
彭剑峰, 勾晓华, 陈发虎, 等. 坡向对海拔梯度上祁连圆柏树木生长的影响[J]. 植物生态学报, 2010, 34(5): 517−525. doi: 10.3773/j.issn.1005-264x.2010.05.005
Peng J F, Gou X H, Chen F H, et al. Influences of slope aspect on the growth of Sabina przewalskii along an elevation gradient in China's Qinghai Province[J]. Chinese Journal of Plant Ecology, 2010, 34(5): 517−525. doi: 10.3773/j.issn.1005-264x.2010.05.005
|
[7] |
勾晓华, 陈发虎, 杨梅学, 等. 祁连山中部地区树轮宽度年表特征随海拔高度的变化[J]. 生态学报, 2004, 24(1): 172−176.
Gou X H, Chen F H, Yang M X, et al. Analysis of the tree-ring width chronology of Qilian Mountains at different elevation[J]. Acta Ecologica Sinica, 2004, 24(1): 172−176.
|
[8] |
詹思敏, 王可逸, 张凌楠, 等. 祁连山东部不同树种径向生长对气候因子的响应[J]. 生态学杂志, 2019, 38(7): 2007−2014.
Zhan S M, Wang K Y, Zhang L N, et al. Species-specific growth responses to climatic factors in the eastern Qilian Mountains[J]. Chinese Journal of Ecology, 2019, 38(7): 2007−2014.
|
[9] |
杨婧雯, 张秋良, 宋文琦, 等. 大兴安岭兴安落叶松和樟子松径向生长对气候变化的响应差异[J]. 应用生态学报, 2021, 32(10): 3415−3427.
Yang J W, Zhang Q L, Song W Q, et al. Response differences of radial growth of Larix gmelinii and Pinus sylvestris var. mongolica to climate change in Daxing'an Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3415−3427.
|
[10] |
薛盼盼, 缪宁, 王东, 等. 川西亚高山林线岷江冷杉和红杉对气候变化的响应[J]. 生态学报, 2022, 42(23): 9701−9711.
Xue P P, Miao N, Wang D, et al. Responses of Abies fargesii var. faxoniana and Larix potaninii to climate change in the subalpine timberline of western Sichuan, China[J]. Acta Ecologica Sinica, 2022, 42(23): 9701−9711.
|
[11] |
郭伊利, 李书恒, 王嘉川, 等. 芦芽山华北落叶松早晚材径向生长对气候变化响应的分离效应[J]. 干旱区研究, 2022, 39(5): 1449−1463.
Guo Y L, Li S H, Wang J C, et al. Response divergence of radial growth to climate change in earlywood and latewood of Larix principis-rupprechtii in Luya Mountain[J]. Arid Zone Research, 2022, 39(5): 1449−1463.
|
[12] |
马晓琦, 史江峰, 史逝远, 等. 江西三清山黄山松树轮早晚材宽度所指示的气候意义[J]. 长江流域资源与环境, 2020, 29(8): 1825−1834.
Ma X Q, Shi J F, Shi S Y, et al. Climatic significance of the earlywood and latewood width of Pinus Taiwanesis in Sanqingshan, Jiangxi Province of China[J]. Resources and Environment in the Yangtze Basin, 2020, 29(8): 1825−1834.
|
[13] |
刘亚静, 周来, 张博, 等. 不同林龄杉木径向变化及其对气象因子的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 135−144.
Liu Y J, Zhou L, Zhang B, et al. Radial variation of Cunninghamia lanceolata in different aged forests and its response to meteorological factors[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(2): 135−144.
|
[14] |
Carrer M, Urbinati C. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra[J]. Ecology, 2004, 85(3): 730−740. doi: 10.1890/02-0478
|
[15] |
Linderholm H W, Linderholm M K. Age-dependen climate sensitivity or Pinus sylvestris L. in the central Scandinavian Mountains[J]. Boreal Envlronment Research, 2004, 9(4): 307−317.
|
[16] |
许玲玲, 同小娟, 张劲松, 等. 山西灵空山油松径向生长对气候变化的响应[J]. 中国农业气象, 2020, 41(6): 357−367. doi: 10.3969/j.issn.1000-6362.2020.06.003
Xu L L, Tong X J, Zhang J S, et al. Response of radial growth of Pinus tabulaeformis to climatic factors in the Lingkong Mountain, Shanxi Province[J]. Chinese Journal of Agrometeorology, 2020, 41(6): 357−367. doi: 10.3969/j.issn.1000-6362.2020.06.003
|
[17] |
Wu G, Xu G, Chen T, et al. Age-dependent tree-ring growth responses of Schrenk spruce (Picea schrenkiana) to climate-A case study in the Tianshan Mountain, China[J]. Dendrochronologia, 2013, 31(4): 318−326. doi: 10.1016/j.dendro.2013.01.001
|
[18] |
张晓, 吴梦婉, SeMyung Kwon, 等. 不同林龄樟子松人工林径向生长对气候及地下水位变化的响应[J]. 生态学报, 2022, 42(16): 6827−6837.
Zhang X, Wu M W, Kwon S M, et al. Radial growth responses of Mongolian pine (Pinus sylvestris var. mongolica) plantations at different ages to climate and groundwater level changes[J]. Acta Ecologica Sinica, 2022, 42(16): 6827−6837.
|
[19] |
秦伟, 朱清科, 张宇清, 等. 陕北黄土区生态修复过程中植物群落物种多样性变化[J]. 应用生态学报, 2009, 20(2): 403−409.
Qin W, Zhu Q K, Zhang Y Q, et al. Dynamics of plant community species diversity in the process of ecological rehabilitation in north Shaanxi loess area[J]. Chinese Journal of Applied Ecology, 2009, 20(2): 403−409.
|
[20] |
于航, 冯天骄, 卫伟, 等. 晋西黄土区土壤理化特征对长期植被恢复的响应[J]. 生态学报, 2024, 44(7): 1−13.
Yu H, Feng T J, Wei W, et al. Response of soil physicochemical characteristics to long-term vegetation restoration in loess region of western Shanxi province[J]. Acta Ecologica Sinica, 2024, 44(7): 1−13.
|
[21] |
安彬, 肖薇薇, 刘宇峰, 等. 1955—2021年黄土高原地区相对湿度时空演变规律[J]. 干旱区地理, 2023, 46(12): 1939−1950.
An B, Xiao W W, Liu Y F, et al. Temporal and spatial evolution of relative humidity in the Loess Plateau during 1955—2021[J]. Arid Land Geography, 2023, 46(12): 1939−1950.
|
[22] |
Yuan M, Wang L, Lin A, et al. Variations in land surface phenology and their response to climate change in Yangtze River basin during 1982-2015[J]. Theoretical and Applied Climatology, 2019, 137(3-4): 1659−1674. doi: 10.1007/s00704-018-2699-7
|
[23] |
Fritts H C. Tree rings and climate[M]. London: Academic Press, 1976.
|
[24] |
张林林, 刘效东, 苏艳, 等. 马尾松人工林生物量与生产力研究进展 [J]. 生态科学, 2018, 37(3): 213-221.
Zhang L L, Liu X D, Su Y, et al. Research progress on the biomass and productivity of Pinus massoniana plantation[J]. Ecological Science, 2018, 37(3): 213−221.
|
[25] |
崔佳月, 彭剑峰, 李静茹, 等. 嵩山地区油松人工林树轮宽度对气候因子的响应[J]. 应用生态学报, 2021, 32(10): 3497−3504.
Cui J Y, Peng J F, Li J R, et al. Responses of tree-ring width of Pinus tabuliformis plantation to climatic factors in Songshan Mountains, central China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3497−3504.
|
[26] |
彭剑峰, 孙小华, 王飞, 等. 西大别山百战坪黄山松径向生长对气候因子的响应[J]. 生态环境学报, 2013, 22(11): 1769−1773. doi: 10.3969/j.issn.1674-5906.2013.11.004
Peng J F, Sun X H, Wang F, et al. Climatic signals from the radial growth of Huangshan pine (Pinus taiwanese's Hayata) in the western Dabie Mountains[J]. Ecology and Environmental Sciences, 2013, 22(11): 1769−1773. doi: 10.3969/j.issn.1674-5906.2013.11.004
|
[27] |
谢梅, 蔡秋芳, 刘禹, 等. 过去百年吕梁山南端油松生长特征及其与气候变化的关系[J]. 地球环境学报, 2023, 14(1): 62−73.
Xie M, Cai Q F, Liu Y, et al. Growth characteristics of Pinus tabuliformis Carr. and its relationship with climate change in the south of Lüliang Mountains in the past century[J]. Journal of Earth Environment, 2023, 14(1): 62−73.
|
[28] |
史倩, 同小娟, 许玲玲, 等. 油松早晚材径向生长对气候因子的响应[J]. 植物生态学报, 2024, 48(8): 988−1000. doi: 10.17521/cjpe.2023.0206
Shi Q, Tong X J, Xu L L, et al. Response of radial growth of early and late wood of planted Pinus tabuliformis to climate variables[J]. Chinese Journal of Plant Ecology, 2024, 48(8): 988−1000. doi: 10.17521/cjpe.2023.0206
|
[29] |
肖健宇, 张文艳, 牟玉梅, 等. 树木年轮揭示的东灵山主要树种间干旱耐受性差异[J]. 应用生态学报, 2021, 32(10): 3487−3496.
Xiao J Y, Zhang W Y, Mou Y M, et al. Differences of drought tolerance of the main tree species in Dongling Mountain, Beijing, China as indicated by tree rings[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3487−3496.
|
[30] |
王嘉川, 李书恒, 郭伊利, 等. 管涔山华北落叶松径向生长对温度变化的动态响应[J]. 生态学杂志, 2023, 42(7): 1568−1576.
Wang J C, Li S H, Guo Y L, et al. Dynamic response of radial growth of Larix principis-rupprechtii to temperature change in Guancen Mountain[J]. Chinese Journal of Ecology, 2023, 42(7): 1568−1576.
|