• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Cui Yuhong, Ye Shaoming, Lu Zhifeng, Yan Yu, Jiang Chenyang. Accumulation and transformation of organic carbon components in soil aggregates of Eucalyptus spp. plantations across different continuous cropping generations[J]. Journal of Beijing Forestry University, 2024, 46(10): 42-52. DOI: 10.12171/j.1000-1522.20240144
Citation: Cui Yuhong, Ye Shaoming, Lu Zhifeng, Yan Yu, Jiang Chenyang. Accumulation and transformation of organic carbon components in soil aggregates of Eucalyptus spp. plantations across different continuous cropping generations[J]. Journal of Beijing Forestry University, 2024, 46(10): 42-52. DOI: 10.12171/j.1000-1522.20240144

Accumulation and transformation of organic carbon components in soil aggregates of Eucalyptus spp. plantations across different continuous cropping generations

More Information
  • Received Date: May 08, 2024
  • Revised Date: June 20, 2024
  • Available Online: October 14, 2024
  • Objective 

    This paper aims to investigate the accumulation and transformation characteristics of soil organic carbon (SOC) components in Eucalyptus spp. plantations of different continuous planting generations, so as to reveal the impact of environmental factors on accumulation and transformation processes of SOC components, thereby providing a scientific basis for improving Eucalyptus spp. productivity and soil management.

    Method 

    Taking the first, second, and third generations of Eucalyptus spp. plantations in Bobai Forest Farm, Bobai County, Guangxi Province of southern China as the research objects, soil samples from 0–40 cm depth were collected. The soil was fractionated into aggregates of > 2 mm, 1–2 mm, 0.25–1 mm, and < 0.25 mm using dry sieving to evaluate soil aggregate stability. The contents and storage of organic carbon components, including active organic carbon, slow organic carbon, and inert organic carbon in different aggregates were measured. Redundancy analysis (RDA) and partial least square structural equation modeling (PLS-SEM) were used to identify the key factors affecting the accumulation and transformation of SOC.

    Result 

    (1) Continuous planting significantly reduced the stability of soil aggregates and decreased the content and storage of various organic carbon components. (2) The contents of each SOC component decreased with increasing aggregate particle size, while the storage distribution showed the opposite trend. (3) RDA and PLS-SEM demonstrated that soil aggregate stability was the main factor influencing SOC accumulation. Continuous planting inhibited the transformation of inert organic carbon into active organic carbon, leading to a decline in the overall effectiveness of SOC.

    Conclusion 

    Continuous planting primarily regulates the accumulation and transformation of SOC components in Eucalyptus spp. plantations by altering the distribution and stability of soil aggregates. These findings enhance the understanding of regulatory mechanisms of soil aggregates in accumulation and transformation processes of SOC in Eucalyptus spp. plantations.

  • [1]
    曹现富, 王晓丽, 邹广权, 等. 不同坡向对尾巨桉人工林林木生长及林下植物多样性的影响[J]. 西南农业学报, 2023, 36(11): 2511−2517.

    Cao X F, Wang X L, Zou G Q, et al. Effects of different slope orientations on growth and understory plant diversity of Eucalyptus urophylla × E. grandis plantation forests[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2511−2517.
    [2]
    龙靖, 何小芳, 陆宏芳, 等. 混交比例对桉树 乡土树种混交林优势树种叶片资源获取性状的影响[J]. 热带亚热带植物学报, 2024, 32(1): 27−36.

    Long J, He X F, Lu H F, et al. Effect of mixed proportions on leaf resource acquisition ccapability in mixed plantations of Eucalyptus and native trees[J]. Journal of Tropical and Subtropical Botany, 2024, 32(1): 27−36.
    [3]
    Huang X, Liu S, Wang H, et al. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China[J]. Soil Biology and Biochemistry, 2014, 73: 42-48.
    [4]
    习丹, 旷远文. 城市化梯度上亚热带常绿阔叶林土壤有机碳及其组分特征[J]. 应用生态学报, 2018, 29(7): 2149−2155.

    Xi D, Kuang Y W. Characteristics of soil organic carbon and its fractions in subtropical evergreen broad-leaved forests along an urbanization gradient[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2149−2155.
    [5]
    Ma W W, Li G, Wu J H, et al. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau[J/OL]. Geoderma, 2020, 377: 114565[2024-02-23]. DOI: 10.1016/j.geoderma.2020.114565
    [6]
    Kurmi B, Nath A J, Lal R, et al. Water stable aggregates and the associated active and recalcitrant carbon in soil under rubber plantation[J/OL]. Science of the Total Environment, 2020, 703: 135498[2024-02-12]. DOI: 10.1016/j.scitotenv.2019.135498
    [7]
    Du L, Zheng Z C, Li T X, et al. Aggregate-associated carbon compositions explain the variation of carbon sequestration in soils after long-term planting of different tea varieties[J/OL]. Science of the Total Environment, 2023, 856: 159227[2024-02-10]. DOI: 10.1016/j.scitotenv.2022.159227
    [8]
    杨家明, 胡健, 潘军晓, 等. 氮添加对高寒草甸土壤团聚体分布及其碳氮含量的影响[J]. 北京林业大学学报, 2022, 44(12): 102−110. doi: 10.12171/j.1000-1522.20210439

    Yang J M, Hu J, Pan J X, et al. Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in alpine meadow[J]. Journal of Beijing Forestry University, 2022, 44(12): 102−110. doi: 10.12171/j.1000-1522.20210439
    [9]
    Ma Y, Cheng X Q, Kang F F, et al. Dynamic characteristics of soil aggregate stability and related carbon and nitrogen pools at different developmental stages of plantations in northern China[J/OL]. Journal of Environmental Management, 2022, 316: 115283[2023−12−23]. https://doi.org/10.1016/j.jenvman.2022.115283.
    [10]
    Yan Y, Wang S Q, Cui Y H, et al. Soil C–N–P stoichiometric characteristics at the aggregate scales in eucalyptus plantations with different stand types in subtropical China[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(4): 6527-6541.
    [11]
    鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000.

    Bao S D. Soil agrochemical analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000.
    [12]
    Rovira P, Vallejo V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach[J]. Geoderma, 2002, 107(1−2): 109−141. doi: 10.1016/S0016-7061(01)00143-4
    [13]
    Jiang W S, Li Z W, Xie H X, et al. Land use change impacts on red slate soil aggregates and associated organic carbon in diverse soil layers in subtropical China[J]. Science of the Total Environment, 2023, 856: 159−194.
    [14]
    Wiesmeier M, Steffens M, Mueller C W, et al. Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils[J]. European Journal of Soil Science, 2012, 63(1): 22−31. doi: 10.1111/j.1365-2389.2011.01418.x
    [15]
    吴昊阳, 牛健植, 王迪, 等. 辽东山区冰缘地貌大孔隙结构特征及其对团聚体稳定性和土壤可蚀性的影响[J]. 北京林业大学学报, 2023, 45(6): 69−81. doi: 10.12171/j.1000-1522.20220283

    Wu H Y, Niu J Z, Wang D, et al. Characteristics of the macropore structure of ice-marginal landforms in the Liaodong Mountain Area of northeastern China and its influence on soil aggregate stability and soil erodibility[J]. Journal of Beijing Forestry University, 2023, 45(6): 69−81. doi: 10.12171/j.1000-1522.20220283
    [16]
    Tang L L, Wang S Q. Dynamics of soil aggregate-related C-N-P stoichiometric characteristics with stand age and soil depth in Chinese fir plantations[J]. Land Degradation & Development, 2022, 33(8): 1290−1306.
    [17]
    Ullah S, Xu Y Y, Liao C, et al. Continuous planting Eucalyptus plantations in subtropical China: soil phenolic acid accumulation and adsorption physiognomies[J/OL]. Frontiers in Forests and Global Change, 2023, 6: 1135029[2024−02−12]. https://doi.org/10.3389/ffgc.2023.1135029.
    [18]
    Li Y P, Wang J. Application of earthworm cast improves soil aggregation and aggregate-associated carbon stability in typical soils from Loess Plateau[J/OL]. Journal of Environmental Management, 2021, 278: 111504[2024−02−12]. https://doi.org/10.1016/j.jenvman.2020.111504.
    [19]
    张頔, 满秀玲, 刘思琪, 等. 寒温带地区非生长季典型森林群落凋落物分解及养分释放[J]. 北京林业大学学报, 2022, 44(3): 65−74. doi: 10.12171/j.1000-1522.20210338

    Zhang D, Man X L, Liu S Q, et al. Litter decomposition and nutrient release of typical forest communities in non-growing season in cold temperate zone[J]. Journal of Beijing Forestry University, 2022, 44(3): 65−74. doi: 10.12171/j.1000-1522.20210338
    [20]
    王龙凤, 肖伟伟, 王树力. 天然次生林人工管理后土壤团聚体稳定性及碳氮分布变化[J]. 北京林业大学学报, 2022, 44(7): 97−106. doi: 10.12171/j.1000-1522.20210497

    Wang L F, Xiao W W, Wang S L. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97−106. doi: 10.12171/j.1000-1522.20210497
    [21]
    Egan G, Crawley M J, Fornara D A. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions[J]. Science of the Total Environment, 2018, 613: 810−819.
    [22]
    Qiu L, Wei X, Gao J, et al. Dynamics of soil aggregate-associated organic carbon along an afforestation chrono sequence[J]. Plant and Soil, 2015, 391: 237−251. doi: 10.1007/s11104-015-2415-7
    [23]
    姚旭, 景航, 梁楚涛, 等. 人工油松林表层土壤团聚体活性有机碳含量对短期氮添加的响应[J]. 生态学报, 2017, 37(20): 6724−6731.

    Yao X, Jing H, Liang C T, et al. Response of labile organic carbon content in surface soil aggregates to short-term nitrogen addition in artificial Pinus tabulaeformis forests[J]. Chinese Journal of Applied Ecology, 2017, 37(20): 6724−6731.
    [24]
    杨倩, 朱大运, 陈静, 等. 植被恢复模式对土壤团聚体和有机碳储量的影响[J]. 森林与环境学报, 2022, 42(6): 631−639.

    Yang Q, Zhu D Y, Chen J, et al. Effects of vegetation restoration models on soil aggregate and organic carbon stock[J]. Journal of Forest and Environment, 2022, 42(6): 631−639.
    [25]
    周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成: 机制和模型[J]. 北京林业大学学报, 2022, 44(10): 11−22. doi: 10.12171/j.1000-1522.20220183

    Zhou Z H, Liu L, Hou L. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11−22. doi: 10.12171/j.1000-1522.20220183
    [26]
    Liu M, Han G L, Zhang Q. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China[J/OL]. Agriculture, Ecosystems & Environment, 2020, 288: 106719[2024−02−12]. https://doi.org/10.1016/j.agee.2019.106719.
    [27]
    Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099−2103. doi: 10.1016/S0038-0717(00)00179-6
    [28]
    Wen Z, White P J, Shen J, et al. Linking root exudation to belowground economic traits for resource acquisition[J]. New Phytologist, 2022, 233(4): 1620−1635. doi: 10.1111/nph.17854
    [29]
    崔宇鸿, 张钱春, 燕羽, 等. 杉木纯林及其混交林土壤团聚体有机磷组分分布特征[J]. 西北植物学报, 2023, 43(9): 1547−1556.

    Cui Y H, Zhang Q C, Yan Y, et al. Distribution characteristics of soil aggregate organic phosphorus in pure and xixed Cunninghumia lanceolata[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(9): 1547−1556.
    [30]
    曹伟, 李露, 赵鹏志, 等. 坡地黑土碳氮分布及其与团聚体稳定性的关系[J]. 北京林业大学学报, 2018, 40(8): 56−63.

    Cao W, Li L, Zhao P Z, et al. Distribution of C and N in black soil and its relationship with aggregate stability in sloping land[J]. Journal of Beijing Forestry University, 2018, 40(8): 56−63.
    [31]
    燕羽, 崔宇鸿, 樊容源, 等. 桉树纯林及其混交林土壤团聚体稳定性及有机氮组分分布特征[J]. 中南林业科技大学学报, 2023, 43(7): 149−158.

    Yan Y, Cui Y H, Fan R Y, et al. Soil aggregate stability and distribution characteristics of organic nitrogen components in Eucalyptus pure and mixed forests[J]. Journal of Central South University of Forestry & Technology, 2023, 43(7): 149−158.
  • Related Articles

    [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]WANG Cui-cui, ZHANG Shuang-bao, XIAN Yu, WANG Dan-dan, GAO Jie, CHENG Hai-tao. Properties of plant fibers and their composites modified in situ with calcium carbonate[J]. Journal of Beijing Forestry University, 2016, 38(3): 95-101. DOI: 10.13332/j.1000-1522.20150297
    [5]GUO Kai-li, GAO Jia-rong, MA Lan, LIU Guo-hua, WANG Bing, YI Yang, WANG Shu, ZHANG Teng-fei. Distribution and tensile mechanical properties of Salix × aureo-pendula root system in soil bioengineering revetment[J]. Journal of Beijing Forestry University, 2015, 37(8): 90-96. DOI: 10.13332/j.1000-1522.20150022
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [10]MENG Xi, WANG Ruo-han, XIE Lei, LONG Ru, MOU Shu-lin, ZHANG Zhi-xiang. Flowering dynamics and dichogamous mechanism in Magnolia grandiflora[J]. Journal of Beijing Forestry University, 2011, 33(4): 63-69.
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views (197) PDF downloads (36) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return