• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Cui Yue, Yan Bing, Li Zhixue, Fan Mingyuan, Chang Xiaomin, Sun Libo. Response of water conservation function of typical protective forests in Bashang area of northern China to stand structure[J]. Journal of Beijing Forestry University, 2024, 46(9): 77-86. DOI: 10.12171/j.1000-1522.20240192
Citation: Cui Yue, Yan Bing, Li Zhixue, Fan Mingyuan, Chang Xiaomin, Sun Libo. Response of water conservation function of typical protective forests in Bashang area of northern China to stand structure[J]. Journal of Beijing Forestry University, 2024, 46(9): 77-86. DOI: 10.12171/j.1000-1522.20240192

Response of water conservation function of typical protective forests in Bashang area of northern China to stand structure

More Information
  • Received Date: June 12, 2024
  • Revised Date: August 27, 2024
  • Available Online: September 18, 2024
  • Objective 

    The Bashang area, a crucial ecological barrier and water-conserving region in the Beijing-Tianjin-Hebei region of northern China, is the focus of this study. Our aim is to explore the influence of stand structure of typical protective forests on water conservation function of litter layer and soil layer.

    Method 

    Three types of typical protective forests (Pinus sylvestris var. mongolica forest, Larix principis-rupprechtii forest, Pinus sylvestris var. mongolica and Larix principis-rupprechtii mixed forest) in the Yudaokou Forest Farm of the Bashang area were selected as research objects. Stand structure parameters such as DBH, tree height, stand age, stand density, canopy closure, and leaf area index (LAI) were investigated. The water-holding capacity of both litter layer and soil layer was assessed using the indoor immersion method and the ring-knife technique. Redundancy analysis was employed to explore the influence mechanism of protective forest structure on the water-holding properties of litter layer and soil layer.

    Result 

    (1) The thickness of litter layer, volume of litter, maximum water holding capacity of litter and effective storage capacity of the mixed forest were greater than those of pure forest, and the difference of thickness was significant (P < 0.05). (2) The total soil porosity, water content and maximum water holding capacity of soil decreased as the soil layer deepened. The total soil porosity and maximum water holding capacity in the 0−30 cm soil layer showed Larix principis-rupprechtii forest > Pinus sylvestris var. mongolica and Larix principis-rupprechtii mixed forest > Pinus sylvestris var. mongolica forest, and in the 30−60 cm soil layer, it was showed as Larix principis-rupprechtii forest > Pinus sylvestris var. mongolica forest > Pinus sylvestris var. mongolica and Larix principis-rupprechtii mixed forest. (3) Redundancy analysis demonstrated that stand structure was closely related to the function of water conservation. Stand density and tree height had a significant influence on water conservation capacity of litter layer in different protection forests. Additionally, tree height and stand age had a significant impact on the water conservation capacity of soil layer in different protection forests (P < 0.05).

    Conclusion 

    Among the three types of typical protective forest, the Pinus sylvestris var. mongolica and Larix principis-rupprechtii mixed forest and Larix principis-rupprechtii forest have the best water-conserving capacity in litter layer and soil layer, respectively. Stand density, tree height, and stand age have a significant effect on their hydrological effects. Therefore, when conducting afforestation in the Bashang area, appropriate tree species, reasonable density, and scientific thinning methods should be selected according to the actual situation to improve the efficiency of moisture utilization. This study provides an important scientific basis for the tending management and stand optimization of typical protective forest in the Bashang area and has positive significance for maintaining ecological balance and sustainable development in this area.

  • [1]
    Han C, Liu Y J, Zhang C U, et al. Effects of three coniferous plantation species on plant-soil feedbacks and soil physical and chemical properties in semiarid mountain ecosystems[J]. Forest Ecosystems, 2021, 8(3): 1−13.
    [2]
    张佳楠, 张建军, 张海博, 等. 晋西黄土区典型林分水源涵养能力评价[J]. 北京林业大学学报, 2019, 41(8): 105−114.

    Zhang J N, Zhang J J, Zhang H B, et al. Water conservation capacity of typical forestlands in the Loess Plateau of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2019, 41(8): 105−114.
    [3]
    梁文俊, 魏曦, 赵伟文, 等. 关帝山不同林分结构华北落叶松林枯落物水文效应[J]. 水土保持学报, 2021, 35(2): 324−329, 337.

    Liang W J, Wei X, Zhao W W, et al. Hydrological effects of litter under different forest structures of Larix principis in Guandi Mountain[J]. Journal of Soil and Water Conservation, 2021, 35(2): 324−329, 337.
    [4]
    王旭, 贾国栋, 岳永杰, 等. 科尔沁沙地南缘典型林分枯落物层与土壤层水源涵养能力研究[J]. 干旱区资源与环境, 2023, 37(9): 144−153.

    Wang X, Jia G D, Yue Y J, et al. Water holding capacity of litter and soil layers in typical forest stand in the southern margin of Horqin Sandy Land[J]. Journal of Arid Land Resources and Environment, 2023, 37(9): 144−153.
    [5]
    陈晶亮, 杨慧, 刘超, 等. 宁夏罗山自然保护区3种典型林分凋落物和土壤层水源涵养能力综合评估[J]. 生态学报, 2023, 43(19): 7987−7997.

    Chen J L, Yang H, Liu C, et al. Comprehensive evaluation of the water conservation capacity of litter and soil layers in three typical forest types in the Luoshan Nature Reserve, Ningxia[J]. Acta Ecologica Sinica, 2023, 43(19): 7987−7997.
    [6]
    孙拥康, 汤景明, 王怡. 亚热带日本落叶松人工林枯落物及土壤层水文效应[J]. 北京林业大学学报, 2021, 43(8): 60−69. doi: 10.12171/j.1000-1522.20200259

    Sun Y K, Tang J M, Wang Y. Hydrological effects of litter and soil layers of Larix kaempferi plantation in subtropical regions[J]. Journal of Beijing Forestry University, 2021, 43(8): 60−69. doi: 10.12171/j.1000-1522.20200259
    [7]
    郭建军, 王佳欢, 胡静霞, 等. 2022年冬奥会崇礼赛区针叶林枯落物及土壤水文效应[J]. 中国水土保持科学(中英文), 2021, 19(4): 44−50.

    Guo J J, Wang J H, Hu J X, et al. Hydrological effects of litter and soil for the coniferous forest in the Chongli District for 2022 Olympic Winter Games, Hebei Province[J]. Science of Soil and Water Conservation, 2021, 19(4): 44−50.
    [8]
    牛勇, 刘洪禄, 张志强. 北京地区典型树种及非生物因子对枯落物水文效应的影响[J]. 农业工程学报, 2015, 31(8): 183−189.

    Niu Y, Liu H L, Zhang Z Q. Effects of typical tree species and abiotic factors on hydrologic characters of forest litter in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8): 183−189.
    [9]
    刘西刚, 王勇辉, 焦黎. 夏尔希里自然保护区典型植被土壤水源涵养功能探究[J]. 水土保持学报, 2019, 33(3): 121−138.

    Liu X G, Wang Y H, Jiao L. Study on soil water conservation function under typical vegetation in Xarxili Nature Reserve[J]. Journal of Soil and Water Conservation, 2019, 33(3): 121−138.
    [10]
    Zheng X, Chen L, Gong W, et al. Evaluation of the water conservation function of different forest types in northeastern China[J]. Sustainability, 2019, 11(15): 4075−4090. doi: 10.3390/su11154075
    [11]
    柳晓娜, 贾国栋, 余新晓. 不同密度杨树人工林的林地涵养水源功能研究[J]. 环境科学与技术, 2017, 40(10): 8−13.

    Liu X N, Jia G D, Yu X X. Study on water conservation function of poplar plantation with different densities[J]. Environmental Science & Technology, 2017, 40(10): 8−13.
    [12]
    郝弯弯, 赵鹏, 李思维, 等. 御道口牧场不同类型防护林的枯落物水文效应[J]. 水土保持学报, 2019, 33(6): 197−204.

    Hao W W, Zhao P, Li S W, et al. Hydrologic effects of different forest types shelterbelt litter in Yudaokou Ranch[J]. Journal of Soil and Water Conservation, 2019, 33(6): 197−204.
    [13]
    陈继东, 周长亮, 李惠丽. 接坝地区9种典型林分类型枯落物层和土壤层水文效应[J]. 水土保持研究, 2017, 24(6): 216−221, 226.

    Chen J D, Zhou C L, Li H L. Hydrological effects of litter and soils in nine forest types of the Jieba Region[J]. Research of Soil and Water Conservation, 2017, 24(6): 216−221, 226.
    [14]
    吴雪铭, 余新晓, 陈丽华, 等. 间伐强度对坝上樟子松林下持水能力的影响[J]. 应用生态学报, 2021, 32(7): 2347−2354.

    Wu X M, Yu X X, Chen L H, et al. Effects of thinning intensity on the understory water-holding capacity of Pinus sylvestris var. mongolica plantation in the Bashang area of north China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2347−2354.
    [15]
    常晓敏, 余新晓, 贾国栋, 等. 基于随机森林的不同径级树木死亡影响因子研究[J]. 生态学报, 2019, 39(21): 8003−8009.

    Chang X M, Yu X X, Jia G D, et al. Influence factors of tree mortality in different size classes based on random forest[J]. Acta Ecologica Sinica, 2019, 39(21): 8003−8009.
    [16]
    张引, 黄永梅, 周长亮, 等. 冀北山地5个海拔梯度油松林枯落物与土壤水源涵养功能研究[J]. 水土保持研究, 2019, 26(2): 126−131.

    Zhang Y, Huang Y M, Zhou C L, et al. Study on litter and soil water conservation function of Pinus tabulaeformis forests at 5 altitudinal gradients in mountains of northern Hebei[J]. Research of Soil and Water Conservation, 2019, 26(2): 126−131.
    [17]
    郭宇嘉, 牛庆花, 陆贵巧, 等. 承德市第三乡林场不同林分类型枯落物和土壤的持水特性[J]. 水土保持通报, 2018, 38(3): 38−44.

    Guo Y J, Niu Q H, Lu G Q, et al. Water-holding capacity of litters and soil in different forests in Disanxiang Forest Farm of Chengde City[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 38−44.
    [18]
    陈歆宇, 谭伟, 杨深钧. 不同类型马尾松混交林结构与水源涵养功能的耦合关系[J]. 水土保持研究, 2023, 30(5): 217−222.

    Chen X Y, Tan W, Yang S J. Coupling relationship between the structure and water conservation function of different mixed forests of Pinus massoniana[J]. Research of Soil and Water Conservation, 2023, 30(5): 217−222.
    [19]
    Lin S, He K J, Wang Z X, et al. Multifactor relationships between the forest structure and water conservation function of Picea crassifolia Kom. plantations in Qinghai Province, China[J]. Land Degradation & Development, 2022, 33(14): 2596−2605.
    [20]
    常晓敏. 华北北部防护林主要树种立地–生长–结构–功能多元耦合关系研究 [D]. 北京:北京林业大学, 2021.

    Chang X M. Multivariate coupling mechanism of site-age-structure-function of main tree species in shelterbelts of northern north China [D]. Beijing: Beijing Forestry University, 2021.
    [21]
    赵阳, 王飞, 齐瑞, 等. 白龙江、洮河林区5种典型森林枯落物与土壤层水源涵养效应[J]. 水土保持研究, 2021, 28(3): 118−125.

    Zhao Y, Wang F, Qi R, et al. Water conservation effect of litter and soil layer of five typical forests in Bailongjiang and Taohe River forest of Gansu[J]. Research of Soil and Water Conservation, 2021, 28(3): 118−125.
    [22]
    郑淼. 华北土石山区不同林分类型枯落物及土壤水文生态效应[J]. 中国水土保持科学(中英文), 2020, 18(2): 84−91.

    Zheng M. Litter and soil hydro-ecological effects of different stand types in the rocky mountain area of North China[J]. Science of Soil and Water Conservation, 2020, 18(2): 84−91.
    [23]
    赵鹏, 马佳明, 李艳茹, 等. 太行山典型区域不同林分类型枯落物水文效应[J]. 水土保持学报, 2020, 34(5): 176−185.

    Zhao P, Ma J M, Li Y R, et al. Hydrological effects of litter in different forest types in the typical areas of Taihang Mountains[J]. Journal of Soil and Water Conservation, 2020, 34(5): 176−185.
    [24]
    侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区3种林地枯落物和土壤水源涵养功能[J]. 水土保持学报, 2018, 32(2): 357−363, 371.

    Hou G R, Bi H X, Wei X, et al. Water conservation function of litters and soil in three kinds of woodlands in gully region of Loess Plateau[J]. Journal of Soil and Water Conservation, 2018, 32(2): 357−363, 371.
    [25]
    兰道云, 毕华兴, 赵丹阳, 等. 晋西黄土区不同密度油松人工林保育土壤功能评价[J]. 水土保持学报, 2022, 36(2): 189−196.

    Lan D Y, Bi H X, Zhao D Y, et al. Evaluation on soil conservation function of Pinus tabuliformis plantation with different densities in the loess area of western Shanxi Province[J]. Journal of Soil and Water Conservation, 2022, 36(2): 189−196.
    [26]
    Neris J, Tejedor M, Rodriguez M, et al. Effect of forest floor characteristics on water repellency, infiltration, runoff and soil loss in andisols of tenerife (Canary Islands, Spain)[J]. Catena, 2013, 108: 50−57.
    [27]
    袁秀锦, 肖文发, 潘磊, 等. 马尾松林分结构对枯落物层和土壤层水文效应的影响[J]. 林业科学研究, 2020, 33(4): 26−34.

    Yuan X J, Xiao W F, Pan L, et al. Effect of Pinus massoniana stand structure on hydrological effects of litter layer and soil layer[J]. Forest Research, 2020, 33(4): 26−34.
    [28]
    温林生, 邓文平, 钟流, 等. 江西省公益林枯落物层和土壤层水源涵养功能评价[J]. 中国水土保持科学(中英文), 2022, 20(3): 35−43.

    Wen L S, Deng W P, Zhong L, et al. Evaluation of water conservation function of litter layer and soil laver of public welfare forests in different soil texture types in Jiangxi Province[J]. Science of Soil and Water Conservation, 2022, 20(3): 35−43.
    [29]
    林立文, 邓羽松, 李佩琦, 等. 桂北地区不同密度杉木林枯落物与土壤水文效应[J]. 水土保持学报, 2020, 34(5): 200−207, 215.

    Lin L W, Deng Y S, Li P Q, et al. Study on the effects of litter and soil hydrology of different density Cunninghamia lanceolata forests in northern Guangxi[J]. Journal of Soil and Water Conservation, 2020, 34(5): 200−207, 215.
    [30]
    刘琳, 熊东红, 张宝军, 等. 拉萨河谷杨树人工林枯落物蓄积特征及持水性能[J]. 干旱区研究, 2021, 38(6): 1674−1682.

    Liu L, Xiong D H, Zhang B J, et al. Litter storage and its water-holding capacity of Populus plantations in Lhasa River Valley[J]. Arid Zone Research, 2021, 38(6): 1674−1682.
    [31]
    涂志华, 范志平, 孙学凯, 等. 大伙房水库流域不同植被类型枯落物层和土壤层水文效应[J]. 水土保持学报, 2019, 33(1): 127−133.

    Tu Z H, Fan Z P, Sun X K, et al. Hydrological effects of litters layer and soil layer in different vegetation types in Dahyofana Watershed[J]. Journal of Soil and Water Conservation, 2019, 33(1): 127−133.
    [32]
    Adanan I C, Wasli M E B, Perumal M, et al. Characterization of soil properties in relation to Shorea macrophylla growth performance under sandy soils at Sabal Forest Reserve, Sarawak, Malaysia[J]. Biodiversitas, 2020, 21(4): 1467−1475.
    [33]
    Ouyang S, Gou M, Lei P, et al. Plant functional trait diversity and structural diversity co-underpin ecosystem multifunctionality in subtropical forests[J]. Forest Ecosystems, 2023, 10(2): 153−161.
    [34]
    Carrer M, Castagneri D, Popa I, et al. Tree spatial patterns and stand attributes in temperate forests: the importance of plot size, sampling design, and null model[J]. Forest Ecology and Management, 2018, 407: 125−134.
    [35]
    Heydari M, Cheraghi J, Omidipour R, et al. Tree dieback, woody plant diversity, and ecosystem driven by topography in semi-arid mountain forests: implication for ecosystem management[J/OL]. Journal of Environmental Management, 2023, 339: 117892[2024−02−23]. https://doi.org/10.1016/j.jenvman.2023.117892.
    [36]
    Li Y, He J, Yu S, et al. Spatial structures of different-sized tree species in a secondary forest in the early succession stage[J]. European Journal of Forest Research, 2020, 139(5): 709−719. doi: 10.1007/s10342-020-01280-w
    [37]
    郭梦娇, 朱江, 程小琴, 等. 辽河源不同林龄油松林水源涵养能力研究[J]. 水土保持学报, 2016, 30(3): 279−284.

    Guo M J, Zhu J, Cheng X Q, et al. Water conservation capacity of Pinus tabulaeformis forests with different ages at Liaohe River[J]. Journal of Soil and Water Conservation, 2016, 30(3): 279−284.
    [38]
    van der Plas F, Ratcliffe S, Ruiz-Benito P, et al. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality.[J]. Ecology Letters, 2018, 21(1): 31−42.
    [39]
    Valencia E, Maestre F T, Bagousse-Pinguet Y L, et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands[J]. New Phytologist, 2015, 206(2): 660−671.
  • Cited by

    Periodical cited type(19)

    1. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    2. 田刘翔宇,张立世,姚纪元,王利民. 基于MaxEnt探究栖息地质量对百灵科鸟类分布影响. 东北师大学报(自然科学版). 2024(02): 106-116 .
    3. 章蜜,罗伟. 庐山保护区白颈长尾雉生境适宜性评价研究. 湖北林业科技. 2024(05): 44-48 .
    4. 王佩,李英杰,袁家根,耿盼,李蕊. 基于优化MaxEnt模型的原麝生境适宜性评价. 野生动物学报. 2023(01): 38-45 .
    5. 富爱华,郜二虎,布日古德,陈敏豪,提杨,栾晓峰. 我国白琵鹭(Platalea leucorodia)越冬地预测与保护现状分析. 生态与农村环境学报. 2022(01): 69-75 .
    6. 吴艳,王洪峰,穆立蔷. 物种分布模型的研究进展与展望. 高师理科学刊. 2022(05): 66-70 .
    7. 李鑫泽,冯佳楠,支晓亮,钟林强,刘鑫鑫,张明海. 东北地区三种鹿科动物潜在栖息地预测与保护空缺分析. 野生动物学报. 2021(02): 318-328 .
    8. 王艳君,高泰,石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报. 2021(09): 59-69 . 本站查看
    9. 张丽霞,孙冬婷,胡昕,朱向博,张敬,晁青鲜,卫泽珍,张成林. 中国圈养褐马鸡种群和饲养管理现状调查. 野生动物学报. 2021(04): 1123-1130 .
    10. 李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响. 林业科学. 2021(10): 102-110 .
    11. 刘博,王晔楠,唐超,刘丽,马光昌,彭正强,阎伟. 云斑斜线天蛾在我国的适生性及限制性环境因子分析. 热带作物学报. 2021(12): 3581-3587 .
    12. 李敏,李秀明,徐家慧,薛琳,武爱明,盘凯筠,闵晓明,李玉太,钱法文. 基于MaxEnt模型预测白琵鹭在中国东北地区的适宜分布区. 生态学杂志. 2020(08): 2691-2703 .
    13. 张丽霞,王志永. 褐马鸡栖息地保护研究. 特种经济动植物. 2020(12): 3-5 .
    14. 唐书培,穆丽光,王晓玲,张静,刘波,孟和达来,鲍伟东. 基于MaxEnt模型的赛罕乌拉国家级自然保护区斑羚生境适宜性评价. 北京林业大学学报. 2019(01): 102-108 . 本站查看
    15. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
    16. 白雪红,王文杰,蒋卫国,师华定,陈坤,陈民. 气候变化背景下京津冀地区濒危水鸟潜在适宜区模拟及保护空缺分析. 环境科学研究. 2019(06): 1001-1011 .
    17. 刘博,覃伟权,阎伟. 基于MaxEnt模型的小巢粉虱在中国的潜在地理分布. 环境昆虫学报. 2019(06): 1276-1286 .
    18. 王浩,杨德宏,满亚洲. 基于GIS技术的动物物种管理及保护. 软件. 2018(12): 111-115 .
    19. 侯海英. 山西褐马鸡种群分布及特性研究. 山西林业科技. 2018(04): 11-13+72 .

    Other cited types(17)

Catalog

    Article views (242) PDF downloads (24) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return