Citation: | Dai Jinxia, Yao Jiani, Liu Shuang, Su Jianyu, Zhang Junjie. Abundance of nifH gene and nitrogen-fixing microbial community composition characteristics in desert scrubland soil[J]. Journal of Beijing Forestry University, 2024, 46(11): 43-52. DOI: 10.12171/j.1000-1522.20240202 |
This paper explores the diversity of soil nitrogen-fixing microorganisms, community structure composition, and environmental influencing factors in desert leguminous scrubland at the community level.
Fluorescence quantitative PCR and Illumina high-throughput sequencing methods were used to study the abundance of nifH gene, nitrogen-fixing microbial diversity and community composition in soils of four typical legume scrubland (Ammopiptanthus mongolicus, Oxytropis aciphylla, Caragana korshinskii, and Caragana tibetica) in Ningxia desert grassland of northwestern China. Pearson correlation analysis and redundancy analysis were used for environmental factor correlation analysis.
(1) There were differences in the abundance of nifH gene and diversity of nitrogen-fixing microorganisms in soil of four types of scrubland. The abundance of nifH in rhizospheric soil of Caragana korshinskii was significantly higher than that in soil of Ammopiptanthus mongolicus, Oxytropis aciphylla and Caragana tibetica forestland (P < 0.05). The richness of nitrogen-fixing microbial communities in soil of C. korshinskii and A. mongolicus forestland were significantly higher than that in O. aciphylla and C. tibetica soil (P < 0.05). The community diversity was significantly higher in C. korshinskii soil than that of A. mongolicus soil (P < 0.05). However, there were no significant differences in diversity of nitrogen-fixing microbial communities in soil of O. aciphylla , C. tibetica and A. mongolicus forestland. (2) A total of 5 phyla, 15 families and 19 genera of nitrogen-fixing microorganisms were detected in soil of legume scrubland. Proteobacteria was predominant phylum with relative abundance ranging from 91.13% to 97.79%. Rhodospirillaceae was common predominant family in rhizospheric soil of the four shrubs, relative abundance accounting for 59.56%−79.68%. At genus level, Skermanella, Azospirillum and Azohydromonas were common dominant genera. The composition of nitrogen-fixing microorganisms in soil of A. mongolicus differed significantly from the other three types of soil, with a large number of distribution of genus Azotobacter (accounting for 25.09%). (3) Correlation analysis showed that the abundance of nifH gene, richness index, and β diversity of nitrogen-fixing microorganisms were significantly positively correlated with soil pH. Soil available phosphorus, available potassium, pH, total nitrogen, and total phosphorus significantly affected the composition of nitrogen-fixing microbial communities.
The abundance of nifH gene, richness and diversity of nitrogen-fixing microorganisms in rhizospheric soil of C. korshinskii are higher than those in other scrubland soils. Soil microbial functional communities of C. korshinskii display stronger nitrogen accumulation and transformation abilities.
[1] |
Venturi V, Keel C. Signaling in the rhizosphere[J]. Trends Plant Science, 2016, 21(3): 187−198. doi: 10.1016/j.tplants.2016.01.005
|
[2] |
Barea J M. Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions[J]. Soil Science and Plant Nutrition, 2015, 15: 261−282.
|
[3] |
Soussi A, Ferjani R, Marasco R, et al. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential[J]. Plant Soil, 2016, 405(1-2): 357−370. doi: 10.1007/s11104-015-2650-y
|
[4] |
雷雨昕. 河西走廊荒漠土壤微生物多样性分布格局[D]. 兰州: 兰州理工大学, 2023.
Lei Y X. Study on the distribution pattern of microbial diversity in desert soil in the Hexi Corridor[D]. Lanzhou: Lanzhou University of Technology, 2023.
|
[5] |
Alfaro F D, Manzano M, Almiray C, et al. Soil bacterial community structure of fog-dependent Tillandsia landbeckii dunes in the Atacama Desert[J]. Plant Systematics and Evolution, 2021, 307(5): 1−11.
|
[6] |
Delgado-Baquerizo M, Reich P B, Trivedi C, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes[J]. Nature Ecology & Evolution, 2020, 4(2): 210−220.
|
[7] |
Aasfar A, Bargaz A, Yaakoubi K, et al. Nitrogen fixing azotobacter species as potential soil biological enhancers for crop nutrition and yield stability[J]. Frontiers in Microbiology, 2021, 12: 628379. doi: 10.3389/fmicb.2021.628379
|
[8] |
李建宏, 李雪萍, 卢虎, 等. 高寒地区不同退化草地植被特性和土壤固氮菌群特性及其相关性[J]. 生态学报, 2017, 37(11): 3647−3654.
Li J H, Li X P, Lu H, et al. Characteristics of, and the correlation between, vegetation and N-fixing soil bacteria in alpine grassland showing various degrees of degradation[J]. Acta Ecologica Sinica, 2017, 37(11): 3647−3654.
|
[9] |
Kizilova A K, Titova L N, Kravchenko I K, et al. Evaluation of the diversity of nitrogen-fixing bacteria in soybean rhizosphere by nifH gene analysis[J]. Mikrobiologiia, 2012, 81(5): 672−681.
|
[10] |
史 策, 聂立水, 魏一凡, 等. 北京海坨山典型林分土壤固氮菌群落特征研究[J]. 林业科学研究, 2022, 35(4): 153−161.
Shi C, Nie L S, Wei Y F, et al. Characteristics of soil nitrogen-fixing bacteria community of typical forest stands at Haituo Mountain, Beijing[J]. Forest Research, 2022, 35(4): 153−161.
|
[11] |
魏庐潞, 徐婷婷, 李媛媛, 等. 同质园环境和遗传分化影响锦鸡儿属植物根际土壤固氮菌多样性和群落结构[J]. 生物多样性, 2023, 31(4): 1−12.
Wei L L, Xu T T, Li Y Y, et al. The common garden environment and genetic differentiation jointly influence the diversity and community structure of nitrogen-fixing bacteria in the rhizosphere soil of three Caragana species[J]. Biodiversity Science, 2023, 31(4): 1−12.
|
[12] |
Marasco R, Mosqueira M J, Fusi M, et al. Rhizosheath microbial community assembly of sympatric desert spear grasses is independent of the plant host[J/OL]. Microbiome, 2018, 6: 215[2023−12−04]. https://doi.org/10.1186/s40168-018-0597-y.
|
[13] |
刘璐, 何寻阳, 杜虎, 等. 喀斯特土壤固氮微生物群落与植被、土壤的关系[J]. 生态学报, 2017, 37(12): 4037−4044.
Liu L, He X Y, Du H, et al. The relationships among nitrogen-fixing microbial communities, plant communities, and soil properties in karst regions[J]. Acta Ecologica Sinica, 2017, 37(12): 4037−4044.
|
[14] |
Sepp S K, Vasar M, Davison J. Global diversity and distribution of nitrogen-fixing bacteria in the soil[J/OL]. Frontiers in Plant Science, 2023, 14: 1100235[2023−11−20]. https://doi.org/10.3389/fpls.2023.1100235.
|
[15] |
Li Y M, Wang S P, Jiang L L, et al. Changes of soil microbial community under different degraded gradients of alpine meadow[J]. Agriculture, Ecosystems & Environment, 2016, 222: 213−222.
|
[16] |
张萌. 内蒙古三种草原类型土壤中固氮菌群多样性分析及其分离鉴定[D]. 呼和浩特: 内蒙古大学, 2021.
Zhang M. Composition, diversity and isolation of nitrogen fixation bacteria in three types of grasslands[D]. Huhhot: Inner Mongolia University, 2021.
|
[17] |
徐玲花. 塔克拉玛干沙漠微生物固氮酶基因多样性及其活性的研究[D]. 武汉: 中国地质大学, 2014.
Xu L H. Study on nitrogenase gene diversity and activity of microorganism in the Taklamakan Desert[D]. Wuhan: China University of Geosciences, 2014.
|
[18] |
Marasco R, Rolli E, Ettoumi B, et al. A drought resistance-promoting microbiome is selected by root system under desert farming[J/OL]. PLoS ONE, 2012, 7(10): e48479[2023−10−31]. https://doi.org/10.1371/journal.pone.0048479.
|
[19] |
Tian Y, Ma X, Li Y, et al. Exploring the structural changes in nitrogen-fixing microorganisms of rhizosheath during the growth of Stipagrostis pennata in the desert[J/OL]. Bioscience Reports, 2021, 41 (4): BSR20201679[2024−04−14]. https://doi.org/10.1042/BSR20201679.
|
[20] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
Lu R K. Analysis methods of soil agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
|
[21] |
刘爽, 姚佳妮, 张钧杰, 等. 荒漠豆科灌丛根际土壤氨氧化和反硝化微生物功能基因丰度及群落多样性特征[J]. 草业学报, 2024, 33(5): 115−127. doi: 10.11686/cyxb2023239
Liu S, Yao J N, Zhang J J, et al. Functional gene abundance and community diversity of ammonia-oxidizing and denitrifying microorganisms in the rhizosphere soil of desert leguminous shrubs[J]. Acta Prataculturae Sinica, 2024, 33(5): 115−127. doi: 10.11686/cyxb2023239
|
[22] |
Liu Y, Chi Q, Cheng H, et al. Comparative microbial nitrogen functional gene abundances in the topsoil vs. subsoil of three grassland habitats in Northern China[J/OL]. Frontiers in Plant Science, 2022, 12: 792002[2024−01−14]. https://doi.org/10.3389/fpls.2021.792002.
|
[23] |
Zou J, Yao Q, Liu J, et al. Changes of diazotrophic communities in response to cropping systems in a Mollisol of Northeast China[J/OL]. PeerJ, 2020, 8: e9550[2023−07−15]. https://doi.org/10.7717/peerj.9550.
|
[24] |
何冬华, 陈俊辉, 徐秋芳, 等. 集约经营对毛竹林土壤固氮细菌群落结构和丰度的影响[J]. 应用生态学报, 2015, 26(10): 2961−2968.
He D H, Chen J H, Xu Q F, et al. Effects of intensive management on abundance and composition of soil N2-fixing bacteria in Phyllostachys heterocycla stands[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 2961−2968.
|
[25] |
Chen S, Xiang X L, Ma H L, et al. Straw mulching and nitrogen fertilization affect diazotroph communities in wheat rhizosphere[J/OL]. Frontiers in Microbiology, 2021, 12: 658668[2024−05−20]. https://doi.org/10.3389/fmicb.2021.658668.
|
[26] |
Ding K, Zhong L, Xin X P, et al. Effect of grazing on the abundance of functional genes associated with N cycling in three types of grassland in Inner Mongolia[J]. Jourmal of Soils and Sediments, 2015, 15(3): 683−693. doi: 10.1007/s11368-014-1016-z
|
[27] |
Chen J, Shen W, Xu H, et al. The composition of nitrogen-fixing microorganisms correlates with soil nitrogen content during reforestation: a comparison between legume and non-legume plantations[J/OL]. Frontiers in Microbiology, 2019, 10: 508 [2024−03−14]. https://doi.org/10.3389/fmicb.2019.00508.
|
[28] |
Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626−631.
|
[29] |
刘爽, 姚佳妮, 沈聪, 等. 荒漠植物柠条根际土壤nifH基因荧光定量及固氮菌多样性分析[J]. 生物技术通报, 2022, 38(12): 252−262.
Liu S, Yao J N, Shen C, et al. Quantitative real-time PCR of nifH gene and diversity analysis of nitrogen-fixing bacteria in rhizosphere soil of Caragana spp. in desert grassland[J]. Biotechnology Bulletin, 2022, 38(12): 252−262.
|
[30] |
Inderjit. Soil microorganisms: an important determinant of allelopathic activity[J]. Plant and Soil, 2005, 274: 227−236. doi: 10.1007/s11104-004-0159-x
|
[31] |
Fernández-Méndez M, Turk-Kubo K A, Buttigieg P L, et al. Diazotroph diversity in the sea ice, melt ponds, and surface waters of the eurasian basin of the central arctic ocean[J/OL]. Frontiers in Microbiology, 2016, 7: 1884[2023−11−23]. https://doi.org/10.3389/fmicb.2016.01884.
|
[32] |
Baker K L, Langenheder S, Nicol G W, et al. Environmental and spatial characterisation of bacterial community composition in soil to inform sampling strategies[J]. Soil Biology & Biochemistry, 2013, 41(11): 2292−2298.
|
[33] |
唐凯. 生物土壤结皮中好氧不产氧光营养细菌群落结构及其功能研究[D]. 呼和浩特: 内蒙古农业大学, 2019.
Tang K. The community structure and function of aerobic anoxygenic phototrophic bacteria in biological soil crusts[D]. Huhhot: Inner Mongolia Agricultural University, 2019.
|
[34] |
Bouffaud M L, Renoud S, Moënne-Loccoz Y, et al. Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere?[J/OL]. Scientific Reports, 2016, 6: 21690[2016−02−23]. https://doi.org/10.1038/srep21690.
|
1. |
林鸿裕,卢桂宁. 基于模糊逻辑综合评判的垃圾处理厂选址仿真. 计算机仿真. 2024(01): 513-517 .
![]() | |
2. |
刘子晴,葛韵宇. 北京第二道绿化隔离地区空间潜力分析及郊野公园选址研究. 北京规划建设. 2024(01): 40-45 .
![]() | |
3. |
黄友慧,辛儒鸿,李凯. 红枫湖镇生态环境质量评价及修复优先区识别研究. 西南林业大学学报(自然科学). 2024(04): 64-72 .
![]() | |
4. |
王菲,孙晨,姜雁林,马晓燕,冯丽. 北京市第二道绿化隔离带地区生态敏感性评价. 北京农学院学报. 2023(02): 105-110 .
![]() | |
5. |
刘烨琪. 基于情景规划的杭州郊野公园选址研究. 现代园艺. 2023(19): 99-102 .
![]() | |
6. |
葛韵宇,李雄. 基于碳汇和游憩服务协同提升的北京市第二道绿化隔离地区郊野公园环空间布局优化. 北京林业大学学报. 2022(10): 142-154 .
![]() |