Citation: | Hao Xuanrui, Jiang Yan, Wang Yuqian, Gai Ying. Overexpression of poplar PtoXTH34 gene to enhance drought resistance of tobacco[J]. Journal of Beijing Forestry University, 2025, 47(1): 63-71. DOI: 10.12171/j.1000-1522.20240219 |
This study explored the effects of xyloglucan endoglycosidase/hydrolase gene PtoXTH34 in response to drought stress in poplar.
The PtoXTH34 of poplar was heterologously expressed in tobacco to analyze the changes in phenotype and parameters related to photosynthesis and stress resistance of transgenic tobacco under drought stress.
(1) Overexpression of PtoXTH34 gene can significantly reduce the rate of water loss in isolated tobacco leaves. (2) After 14 d of drought treatment, the control tobacco showed obvious wilting, while the leaves of overexpressing PtoXTH34 plants grew well and remained green. The height and stem diameter of plants overexpressing PtoXTH34 were significantly higher than those of control. (3) After 14 d of drought treatment, the net photosynthetic rate, stomatal conductivity, and transpiration rate of control were close to 0, while the photosynthetic indexes of overexpressing PtoXTH34 tobacco were significantly higher than those of control, and higher than before drought treatment. (4) After 14 d of drought treatment, both H2O2 and MDA contents in control increased significantly and were significantly higher than those in overexpressing PtoXTH34 plants, and the control plants showed accumulation of reactive oxygen species and significant leaf damage, while the overexpressed PtoXTH34 plants did not exhibit this phenomenon.
Overexpression of PtoXTH34 in tobacco enhances drought resistance of plants by reducing water-loss rate of leaves, improving photosynthesis, and clearing accumulation of reactive oxygen species. This study lays the foundation for gene function of PtoXTH34 and enriches genetic resources for molecular breeding of trees.
[1] |
Cosgrove D J. Growth of the plant cell wall[J]. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850−861. doi: 10.1038/nrm1746
|
[2] |
Rose J K C, Braam J, Fry S C, et al. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature[J]. Plant and Cell Physiology, 2002, 43(12): 1421−1435. doi: 10.1093/pcp/pcf171
|
[3] |
Baumann M J, Eklöf J M, Michel G, et al. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism[J]. The Plant Cell, 2007, 19(6): 1947−1963. doi: 10.1105/tpc.107.051391
|
[4] |
宣云, 赵竑绯, 郭肖颖, 等. 植物细胞壁重构酶木葡聚糖内转糖苷酶/水解酶(XTH)的研究进展[J]. 中国农学通报, 2016, 32(18): 83−88.
Xuan Y, Zhao H F, Guo X Y, et al. Plant cell wall, remodeling enzyme xyloglucan endotransglucosylase/hydrolase (XTH)[J]. China Agriculture Bulletin, 2016, 32(18): 83−88.
|
[5] |
陈燕. 龙眼三维基因组构建及细胞壁修饰基因BGAL9和XTH22在体胚发生早期的功能研究[D]. 福州: 福建农林大学, 2023.
Chen Y. Three-dimensional genome construction in longan and the function of cell wall modification genes BGAL9 and XTH22 during early somatic embryogenesis[D]. Fuzhou: Fujian Agriculture and Forestry University, 2023.
|
[6] |
Han Y, Han S, Ban Q, et al. Overexpression of persimmon DkXTH1 enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants[J]. Plant Cell Reports, 2017, 36(4): 583−596. doi: 10.1007/s00299-017-2105-4
|
[7] |
Takeda T, Furuta Y, Awano T, et al. Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(13): 9055−9060.
|
[8] |
王迪. 苹果砧木杂交后代MdXTH15、MdXTH23基因响应盐胁迫功能验证[D]. 阿拉尔: 塔里木大学, 2023.
Wang D. MdXTH15, MdXTH23 of the hybrid offspring of apple rootstock functional validation of genes in response to salt stress[D]. Aral: Tarim University, 2023.
|
[9] |
马怀龙. 甜菜木葡聚糖内转糖苷酶基因BvXTH1的克隆及功能分析[D]. 呼和浩特: 内蒙古农业大学, 2018.
Ma H L. Cloning and functional analysis of xyloglucan endotransglucosylase gene BvXTH1 from sugar beets (Beta vulgaris L.)[D]. Hohhot: Inner Mongolia Agricultural University, 2018.
|
[10] |
Cho S K, Kim J E, Park J A, et al. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants[J]. FEBS Letters, 2006, 580(13): 3136−3144. doi: 10.1016/j.febslet.2006.04.062
|
[11] |
Jiang Y, Li Y, Lu C, et al. Isolation and characterization of Populus xyloglucan endotransglycosylase/hydrolase (XTH) involved in osmotic stress responses[J]. International Journal of Biological Macromolecules, 2020, 155: 1277−1287. doi: 10.1016/j.ijbiomac.2019.11.099
|
[12] |
Johansson P, Brumer Ⅲ H, Baumann M J, et al. Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding[J]. The Plant Cell, 2004, 16(4): 874−886. doi: 10.1105/tpc.020065
|
[13] |
韩彦莎. 胡杨XTH调控烟草盐诱导肉质化及缓解重金属胁迫的机理研究[D]. 北京: 北京林业大学, 2013.
Han Y S. Populus euphratica XTH mediates salinity-induced leaf succulence and alleviates heavy metal stress in tobacco plants[D]. Beijing: Beijing Forestry University, 2013.
|
[14] |
Han Y, Wang W, Sun J, et al. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants[J]. Journal of Experimental Botany, 2013, 64(14): 4225−4238. doi: 10.1093/jxb/ert229
|
[15] |
Han Y , Sa G, Sun J , et al. Overexpression of Populus euphratica xyloglucan endotransglucosylase/hydrolase gene confers enhanced cadmium tolerance by the restriction of root cadmium uptake in transgenic tobacco[J]. Environmental and Experimental Botany, 2014, 100: 74−83.
|
[16] |
Cheng Z, Zhang X, Yao W, et al. Genome-wide identification and expression analysis of the xyloglucan endotransglucosylase/hydrolase gene family in poplar[J]. BMC Genomics, 2021, 22(1): 804. doi: 10.1186/s12864-021-08134-8
|
[17] |
余凌翔, 鲁韦坤, 张加云, 等. 烤烟叶片光合速率日变化特征及其影响因素分析[J]. 气象与环境科学, 2021, 44(5): 79−86.
Yu L X, Lu W K, Zhang J Y, et al. Study on diurnal variation characteristics of photosynthetic rate in tobacco leaves and its influence factors[J]. Meteorology and Environmental Science, 2021, 44(5): 79−86.
|
[18] |
韩彦莎, 仪慧兰. 过表达胡杨XTH基因能够提高烟草抗旱性[J]. 中国生物化学与分子生物学报, 2016, 32(8): 919−925.
Han Y S, Yi H L. Over-expression of Populus euphratica XTH gene enhances drought tolerance of tobacco[J]. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32(8): 919−925.
|
[19] |
陈龙, 张沿政, 李永光, 等. GmXTH23基因的克隆及抗旱性鉴定[J]. 江西农业大学学报, 2020, 42(5): 898−905.
Chen L, Zhang Y Z, Li Y G, et al. Cloning of GmXTH23 gene and identification of its drought resistance[J]. Journal of Jiangxi Agricultural University, 2020, 42(5): 898−905.
|
[20] |
Han J, Liu Y, Shen Y, et al. A surprising diversity of xyloglucan endotransglucosylase/hydrolase in wheat: new in sight to the roles in drought tolerance[J]. International Journal of Molecular Sciences, 2023, 24(12): 9886. doi: 10.3390/ijms24129886
|
[21] |
沈少炎, 吴玉香, 郑郁善. 植物干旱胁迫响应机制研究进展: 从表型到分子[J]. 生物技术进展, 2017, 7(3): 169−176.
Shen S Y, Wu Y X, Zheng Y S. Review on drought response in plants from phenotype to molecular[J]. Biotechnology Progress, 2017, 7(3): 169−176.
|
[22] |
刘波, 池明, 曹梦琦, 等. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 1−12.
Liu B, Chi M, Cao M Q, et al. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana[J]. [J]. Journal of Crop Sciences, 2024, 50(9): 1−12.
|
[23] |
王依萍. 细叶百合LpWRKY49基因的克隆与抗盐和抗旱功能分析[D]. 哈尔滨: 东北林业大学, 2024.
Wang Y P. Cloning and functional analysis of salt and drought resistance of the LpWRKY49 gene in Lilium pumilum[D]. Harbin: Northeast Forestry University, 2024.
|
[24] |
陈简村, 史莹莹, 何栋, 等. 4种报春苣苔对干旱胁迫的生理响应及抗旱性评价[J]. 安徽农业大学学报, 2021, 48(5): 757−762.
Chen J C, Shi Y Y, He D, et al. Physiological response and drought resistance evaluation of four kinds of primulina[J]. Journal of Anhui Agricultural University, 2021, 48(5): 757−762.
|
[25] |
党明青, 王京平, 冉昆, 等. 泰山海棠抗旱基因MhDREB2A的克隆与功能鉴定[J]. 沈阳农业大学学报, 2022, 53(4): 462−468.
Dang M Q, Wang J P, Ran K, et al. Cloning and functional idenfication of drought-resistant related gene in Malus hupehensis[J]. Journal of Shenyang Agricultural University, 2022, 53(4): 462−468.
|
[26] |
周琪, 冯燕茹, 李嵩, 等. 小麦TaXTH-7A基因的克隆及抗旱性鉴定[J]. 农业生物技术学报, 2019, 27(9): 1521−1532.
Zhou Q, Feng Y R, Li S, et al. Cloning and drought resistance identification of TaXTH-7A gene in wheat (Triticum aestivum)[J]. Journal of Agricultural Biotechnology, 2019, 27(9): 1521−1532.
|
[27] |
李波, 曾琴, 赵丹, 等. 杜仲EuERD16基因的克隆及功能分析[J]. 基因组学与应用生物学, 2023, 42(4): 373−383.
Li B, Zeng Q, Zhao D, et al. Cloning and function analysis of EuERD16 gene in Eucommia ulmoides[J]. Genomics and Applied Biology, 2023, 42(4): 373−383.
|
[28] |
徐松华. 逆境条件下植物体内活性氧代谢研究进展[J]. 安徽农学通报, 2021, 27(21): 29−32.
Xu S H. Research advances of reactive oxygen species in plants under environmental stress[J]. Anhui Agriculture Bulletin, 2021, 27(21): 29−32.
|