Citation: | Wang Qingni, Cao Xiaojuan, Liu Ying, Zhang Fengbao. Response of runoff and sediment production on sand-covered loess slopes to slope length and sand covering thickness[J]. Journal of Beijing Forestry University, 2024, 46(10): 81-89. DOI: 10.12171/j.1000-1522.20240229 |
Aeolian sand-covered loess slope is a special geomorphic landscape with a unique erosion pattern formed by multi-dynamic forces within the wind-water erosion crisscross region of the Loess Plateau. Objectives of this study are to investigate the response of runoff and sediment production processes to slope length and thickness of sand covering on the aeolian sand-covered loess slopes, which can provide essential explanation for preventing and predicting soil erosion in this region.
The quantitative analysis was based on observations of runoff and sediment production in indoor simulated rainfall experiments with the slope length (between 1 and 3 m) and thickness of sand covering (2, 5 and 10 cm). The effects of slope length and thickness of sand covering were analysed against a control group without sand covering.
(1) Compared with the loess slope without sand covering, the time to runoff generation on the sand-covered slope was significantly extended by 3 to 30.72 times, the average runoff rate was reduced by 21% to 84%, the average sediment yield rate was increased by 2.99 to 10.66 times, and the sediment concentration was increased by 3.38 to 18.07 times, all of which were intensified as the thickness of sand covering increased. (2) The 1 m slope with a 10 cm sand layer exhibited a significant effect on reducing the runoff rate, while the average runoff rate with a 3 m slope demonstrated minor variations among different thicknesses of sand covering. Whether covered by sands or not, the average sediment yield rate and sediment concentration from 3 m slope were significantly higher than those from the 1 m slope. (3) The increases in slope length and thickness of sand covering enhanced the variability of instantaneous runoff and sediment yields during rainfall events. The instantaneous runoff rate of 1 m slope without sand covering was found to be higher than that with sand covering during rainfall. Notably, both runoff and sediment yields from 3 m slopes with a thicker sand covering showed a distinct peak, and some instantaneous runoff coefficients exceeded 1 during the rainfall events. (4) The structural equation model revealed that the slope length had the greatest influence on runoff rate (path coefficient = 0.65), and the sand thickness had the greatest influence on sediment yield rate (path coefficient = 0.71). The slope length exhibited an indirect positive effect (path coefficient = 0.40) on sediment yield through runoff production.
The slope length increases both runoff and sediment yield rates, while the thickness of sand covering reduces the runoff rate and increases sediment yield rate. The synergy of slope length and thickness of sand covering enhances the variability of runoff and sediment production processes, which makes the runoff and sediment production more changeable during rainfall.
[1] |
唐克丽, 周佩华. 黄土高原土壤侵蚀研究若干问题的讨论[C]// 张兴昌. 中国科学院西北水土保持研究所集刊. 杨凌: 水土保持研究, 1988: 1−4.
Tang K L, Zhou P H. Discussion on problems of soil erosion in Loess Plateau[C]// Zhang X C. Memoir of NISWC, Academia Sinica. Yangling: Research of Soil and Water Conservation, 1988: 1−4.
|
[2] |
张卓佩, 牛健植, 樊登星, 等. 黄河中游多沙粗沙区土壤水蚀时空变化及动态驱动力分析[J]. 水土保持学报, 2024, 38(2): 85−96.
Zhang Z P, Niu J Z, Fan D X, et al. Analysis of spatial and temporal evolution and dynamic driving force of soil water erosion in the middle reaches of the Rellow River in the rich and coarse sediment area[J]. Journal of Soil and Water Conservation, 2024, 38(2): 85−96.
|
[3] |
秦富仓, 杨振奇, 李龙. 砒砂岩区土壤侵蚀机理与生态修复技术研究进展[J]. 北京林业大学学报, 2020, 42(12): 142−150.
Qin F C, Yang Z Q, Li L. Research progress on soil erosion mechanism and ecological restoration technology in feldspathic sandstone region[J]. Journal of Beijing Forestry University, 2020, 42(12): 142−150.
|
[4] |
索安宁, 赵文喆, 王天明, 等. 近50年来黄土高原中部水土流失的时空演化特征[J]. 北京林业大学学报, 2007, 29(1): 90−97. doi: 10.3321/j.issn:1000-1522.2007.01.016
Suo A N, Zhao W Z, Wang T M, et al. Spatial-temporal succession characteristics of soil and water loss in the central Loess Plateau during the last 50 years[J]. Journal of Beijing Forestry University, 2007, 29(1): 90−97. doi: 10.3321/j.issn:1000-1522.2007.01.016
|
[5] |
徐建华, 吴成基, 林银平, 等. 黄河中游粗泥沙集中来源区界定研究[J]. 水土保持学报, 2006, 20(1): 6−9, 14. doi: 10.3321/j.issn:1009-2242.2006.01.002
Xu J H, Wu C J, Lin Y P, et al. Definition on source area of centralized coarse sediment in middle Yellow River[J]. Journal of Soil and Water Conservation, 2006, 20(1): 6−9, 14. doi: 10.3321/j.issn:1009-2242.2006.01.002
|
[6] |
武秀荣, 张风宝, 王占礼. 片沙覆盖黄土坡面沙土二元结构剖面土壤物理性质变化研究[J]. 水土保持学报, 2014, 28(6): 190−193, 210.
Wu X R, Zhang F B, Wang Z L. Variation of sand and loess properties of binary structure profile in hilly region covered by sand of the Loess Plateau[J]. Journal of Soil and Water Conservation, 2014, 28(6): 190−193, 210.
|
[7] |
张丽萍, 唐克丽, 张平仓. 片沙覆盖的黄土丘陵区土壤水蚀过程研究[J]. 土壤侵蚀与水土保持学报, 1999, 5(1): 41−46.
Zhang L P, Tang K L, Zhang P C. Soil water erosion processes in loess hilly-gully region covered with sheet sand[J]. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(1): 41−46.
|
[8] |
张丽萍, 倪含斌, 吴希媛. 黄土高原水蚀风蚀交错区不同下垫面土壤水蚀特征实验研究[J]. 水土保持研究, 2005, 12(5): 130−131, 196. doi: 10.3969/j.issn.1005-3409.2005.05.029
Zhang L P, Ni H B, Wu X Y. Soil water erosion processes on sloping land with different material in the wind-water interaction zone in the Loess Plateau[J]. Research of Soil and Water Conservation, 2005, 12(5): 130−131, 196. doi: 10.3969/j.issn.1005-3409.2005.05.029
|
[9] |
惠振江. 陕北毛乌素沙地与黄土区过渡地带荒漠化研究[D]. 杨凌: 西北农林科技大学, 2001.
Hui Z J. Desertification in the transition zone between Maowusu Sandy Land and loess hill region[D]. Yangling: Northwest A&F University, 2001.
|
[10] |
Xu G C, Tang S S, Lu K X, et al. Runoff and sediment yield under simulated rainfall on sand-covered slopes in a region subject to wind-water erosion[J]. Environmental Earth Sciences, 2015, 74(3): 2523−2530. doi: 10.1007/s12665-015-4266-1
|
[11] |
Zhang F B, Bai Y J, Xie L Y, et al. Runoff and soil loss characteristics on loess slopes covered with aeolian sand layers of different thicknesses under simulated rainfall[J]. Journal of Hydrology, 2017, 549: 244−251. doi: 10.1016/j.jhydrol.2017.04.002
|
[12] |
Zhang F B, Yang M Y, Li B B, et al. Effects of slope gradient on hydro-erosional processes on an aeolian sand-covered loess slope under simulated rainfall[J]. Journal of Hydrology, 2017, 553(Suppl. C): 447−456.
|
[13] |
谢林妤, 白玉洁, 张风宝, 等. 沙层厚度和粒径组成对覆沙黄土坡面产流产沙的影响[J]. 土壤学报, 2017, 54(1): 60−72. doi: 10.11766/trxb201604190106
Xie L Y, Bai Y J, Zhang F B, et al. Effects of thickness and particle size composition of overlying sand layer on runoff and sediment yield on sand-covered loess slopes[J]. Acta Pedologica Sinica, 2017, 54(1): 60−72. doi: 10.11766/trxb201604190106
|
[14] |
曹晓娟, 谢林妤, 张风宝, 等. 沙层特性对沙盖黄土坡面产流产沙变化贡献的定量分析[J]. 地理学报, 2019, 74(5): 962−974. doi: 10.11821/dlxb201905010
Cao X J, Xie L Y, Zhang F B, et al. Quantifying the contributions of sand layer characteristic to variations of runoff and sediment yields from sand-covered loess slopes during simulated rainfall[J]. Acta Geographica Sinica, 2019, 74(5): 962−974. doi: 10.11821/dlxb201905010
|
[15] |
Ren Z P, Zhang X, Zhang X C, et al. Sand cover enhances rill formation under laboratory rainfall simulation[J/OL]. Catena, 2021, 205: 105472[2023−01−23]. 10.1016/j.catena.2021.105472
|
[16] |
冯昭阳, 汤珊珊, 李鹏, 等. 不同覆沙方式下的坡面侵蚀产沙特性研究[J]. 干旱区资源与环境, 2023, 37(6): 183−191.
Feng Z Y, Tang S S, Li P, et al. Characteristics of slope erosion and sediment yield under different sand cover modes[J]. Journal of Arid Land Resources and Environment, 2023, 37(6): 183−191.
|
[17] |
张辉, 李鹏, 汤珊珊, 等. 多场次降雨条件下覆沙坡面的径流产沙特性试验研究[J]. 泥沙研究, 2016(6): 59−65.
Zhang H, Li P, Tang S S, et al. Experimental study on runoff and sediment yield characteristics on sand-covered slope under the condition of repetitive rainfall[J]. Journal of Sediment Research, 2016(6): 59−65.
|
[18] |
汤珊珊, 李占斌, 鲁克新, 等. 覆沙坡面水动力学参数与径流产沙的关系[J]. 农业工程学报, 2017, 33(20): 136−143. doi: 10.11975/j.issn.1002-6819.2017.20.017
Tang S S, Li Z B, Lu K X, et al. Relationship between hydrodynamic parameters and runoff and sediment yield on sand-covered slope in rainfall simulation study[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 136−143. doi: 10.11975/j.issn.1002-6819.2017.20.017
|
[19] |
汤珊珊, 高海东, 李占斌, 等. 坡面覆沙后侵蚀泥沙颗粒分选特性[J]. 农业工程学报, 2017, 33(2): 125−130. doi: 10.11975/j.issn.1002-6819.2017.02.017
Tang S S, Gao H D, Li Z B, et al. Characteristics of particle separation of erosion sediment in slop surface covered with sand[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 125−130. doi: 10.11975/j.issn.1002-6819.2017.02.017
|
[20] |
Qin W, Guo Q K, Cao W H, et al. A new RUSLE slope length factor and its application to soil erosion assessment in a Loess Plateau Watershed[J]. Soil Tillage Research, 2018, 182: 10−24. doi: 10.1016/j.still.2018.04.004
|
[21] |
Shi F Y, Zhang F B, Shen N, et al. Quantifying interactions between slope gradient, slope length and rainfall intensity on sheet erosion on steep slopes using multiple linear regression[J]. Science of the Total Environment, 2023, 908: 168090.
|
[22] |
Lourenço S D N, Sassa K, Fukuoka H. Failure process and hydrologic response of a two layer physical model: Implications for rainfall-induced landslides[J]. Geomorphology (Amsterdam, Netherlands), 2006, 73(1): 115−130.
|
[23] |
Shi Z H, Yue B J, Wang L, et al. Effects of mulch cover rate on interrill erosion processes and the size selectivity of eroded sediment on steep slopes[J]. Soil Science Society of America Journal, 2013, 77(1): 257−267. doi: 10.2136/sssaj2012.0273
|
[24] |
Chaplot V A M, Le Bissonnaisy Y. Runoff features for interrill erosion at different rainfall intensities, slope lengths, and gradients in an agricultural loessial hillslope[J]. Soil Science Society of America Journal, 2003, 67(3): 844−851. doi: 10.2136/sssaj2003.8440
|
[25] |
Hardie M A, Doyle R B, Cotching W E, et al. Hydropedology and preferential flow in the Tasmanian texture-contrast soils[J]. Vadose Zone J, 2013, 12(4): 1−14.
|
[26] |
Fox G A, Wilson G V. The role of subsurface flow in hillslope and stream bank erosion: a review[J]. Soil Science Society of America Journal, 2010, 74(3): 717−733. doi: 10.2136/sssaj2009.0319
|
[27] |
Eastham J, Gregory P J, Williamson D R. A spatial analysis of lateral and vertical fluxes of water associated with a perched watertable in a duplex soil[J]. Soil Research, 2000, 38(4): 879−890. doi: 10.1071/SR99003
|
[28] |
李永山, 贾晓鹏, 马启民, 等. 孔兑沙漠小流域高含沙洪水水沙关系特征及其指示意义:以毛布拉孔兑苏达尔沟为例[J]. 干旱区资源与环境, 2019, 33(3): 92−97.
Li Y S, Jia X P, Ma Q M, et al. Characteristics of sediment-discharge relationship of hyper-concentrated flood and its implication in the Sudaer River of Maobula Kongdui[J]. Journal of Arid Land Resources and Environment, 2019, 33(3): 92−97.
|
[29] |
许炯心. “十大孔兑”侵蚀产沙与风水两相作用及高含沙水流的关系[J]. 泥沙研究, 2013(6): 28−37.
Xu J X. Erosion and sediment yield of 10 small tributaries joining Inner Mengolia reach of upper Yellow River in relation with coupled wind-water processes and hyperconcentrated flows[J]. Journal of Sediment Research, 2013(6): 28−37.
|
[30] |
苗书玲, 曹艳萍, 李晴晴. 1951—2019年黄河流域极端气候事件时空变化规律分析[J]. 河南大学学报 (自然科学版), 2022, 52(4): 416−429.
Miao S L, Cao Y P, Li Q Q. Spatiotemporal distribution of extreme climate events in the Yellow River Basin during 1951–2019[J]. Journal of Henan University (Natural Science), 2022, 52(4): 416−429.
|
[1] | Hu Zhenhong, Zhao Zhuqi, He Xian, Yuan Mengfan, Cheng Lei. Research progress of impacts of tree species diversity on microbial decomposition of forest deadwood and carbon cycling[J]. Journal of Beijing Forestry University, 2024, 46(11): 1-9. DOI: 10.12171/j.1000-1522.20240233 |
[2] | Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212 |
[3] | Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. DOI: 10.12171/j.1000-1522.20180437 |
[4] | He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. DOI: 10.12171/j.1000-1522.20190185 |
[5] | Tong Long, Zhang Lei, Li Bin, Geng Yanghui, Xie Jinzhong, Zhang Wei, Chen Lijie. Effects of different truncation treatments on the stoichiometry of C, N and P in leaves of Dendrocalamus latiflorus[J]. Journal of Beijing Forestry University, 2018, 40(11): 69-75. DOI: 10.13332/j.1000--1522.20180216 |
[6] | ZHONG Yue-ming, DONG Fang-yu, WANG Wen-juan, WANG Jian-ming, LI Jing-wen, WU Bo, JIA Xiao hong. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53-61. DOI: 10.13332/j.1000-1522.20170089 |
[7] | ZHANG Min, ZHANG Wei, GONG Zai-xin, ZHENG Cai-xia. Morphologic and anatomical observations in the process of ovulate strobilus generation and development in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2017, 39(6): 1-12. DOI: 10.13332/j.1000-1522.20160411 |
[8] | ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41. |
[9] | XIAO Yang, CHEN Li-hua, YU Xin-xiao, WANG Xiao-ping, QIN Yong-sheng, CHEN Jun-qi. Nutrient cycling of N, P and K in a plantation ecosystem of Pinus tabulaeformis in Miyun District, Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 72-75. |
[10] | YU Zhan-yuan, CENG De-hui, JIANG Feng-qi, FAN Zhi-ping, CHEN Fu-sheng, ZHAO Qiong. Responses of key carbon cycling processes to the addition of water and fertilizers to sandy grassland in semi-arid region[J]. Journal of Beijing Forestry University, 2006, 28(4): 45-50. |
1. |
沈汉,郑成忠,张能军,邱勇斌,徐金良,成向荣. 间伐对杉木大径材培育林分的生长和乔木碳储量的影响. 东北林业大学学报. 2025(04): 47-54+60 .
![]() | |
2. |
高彤,宋鑫彧,任允泽,毛亮亮,高然,董希斌. 抚育间伐强度对针阔混交林碳动态变化的影响. 中南林业科技大学学报. 2024(02): 118-128 .
![]() | |
3. |
牛鉴祺,吕彦飞,王树力. 抚育间伐对杨桦次生林非结构性碳水化合物质量分数和碳氮磷生态化学计量特征的影响. 东北林业大学学报. 2024(06): 51-57 .
![]() | |
4. |
赵鹏,刘子玺,李得禄,张俊年,张万科,肖东,杨斌元. 祁连山国家公园典型生态系统固碳功能研究综述. 陕西林业科技. 2024(02): 127-131+134 .
![]() | |
5. |
吴章明,唐思莹,宋思宇,李聪,刘丽鸽,朱鹏,徐红伟,张学强,张健,刘洋. 带状采伐初期对华西雨屏区杉木人工林土壤碳组分及稳定性的影响. 四川农业大学学报. 2024(04): 847-860+878 .
![]() | |
6. |
吕彦飞,牛鉴祺,王树力. 抚育间伐对小黑杨人工林非结构性碳和氮磷钾生态化学计量特征的影响. 森林工程. 2024(05): 62-73 .
![]() | |
7. |
邹丰虎,柴宗政. 近自然经营对马尾松人工林生态系统碳储量的影响. 广西科学. 2024(03): 405-415 .
![]() | |
8. |
赵吉平. 不同结构落叶松天然林生物量及生产力特征. 南方农业. 2023(04): 101-104 .
![]() | |
9. |
高谢雨,董利虎,郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响. 南京林业大学学报(自然科学版). 2023(06): 85-94 .
![]() | |
10. |
杜雪,王海燕,邹佳何,孟海,赵晗,崔雪,董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素. 生态环境学报. 2022(04): 663-669 .
![]() | |
11. |
肖军,雷蕾,曾立雄,李肇晨,马成功,肖文发. 不同经营模式对华北油松人工林碳储量的影响. 生态环境学报. 2022(11): 2134-2142 .
![]() | |
12. |
张乃暄,王韵頔,许中旗,付立华,张菲,程顺. 抚育间伐对塞罕坝地区云杉人工林碳储量及固碳速率的影响. 河北农业大学学报. 2022(06): 81-87 .
![]() | |
13. |
王亚辉,牟长城,杨智慧,刘珽,李轩男. 透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响. 北京林业大学学报. 2021(10): 54-64 .
![]() | |
14. |
赵状,董希斌,曲杭峰,宋鑫彧,刘慧,毛亮亮. 可拓评判法在红皮云杉碳质量分数评价中的应用. 东北林业大学学报. 2021(10): 71-76 .
![]() | |
15. |
陈俊华,张鑫,谢天资,龚固堂,王琛,慕长龙. 川中丘陵区人工柏木林不同间伐强度效果评价. 四川林业科技. 2021(06): 11-20 .
![]() | |
16. |
南维波. 不同抚育强度对兴安落叶松人工林的影响. 农村实用技术. 2020(06): 121-122 .
![]() | |
17. |
徐清乾,黄帆,张勰,王湘莹,梁贵明. 雪峰山区杉木大径材培育立地及密度控制研究. 湖南林业科技. 2020(03): 32-38 .
![]() | |
18. |
龚映匀,王瑞辉,张斌,刘凯利,董凯丽,刘俊涛,赵苏亚,周钰淮. 抚育间伐对川西柳杉人工林生长和土壤有机碳的影响. 林业资源管理. 2020(06): 96-104 .
![]() | |
19. |
宋重升,张利荣,王有良,游云飞,冯随起,林开敏. 抚育间伐对人工林生态系统影响的研究进展. 亚热带农业研究. 2020(04): 279-288 .
![]() | |
20. |
刘泰瑞,任达,董威,覃志杰,张芸香,郭晋平. 华北落叶松天然林目标树间伐释压与胸径生长关系研究. 中南林业科技大学学报. 2019(01): 20-24+44 .
![]() | |
21. |
廖鋆章,贲丽云. 不同间伐措施强度对杉木人工林碳储量及其分配的影响研究. 低碳世界. 2019(04): 308-309 .
![]() | |
22. |
周焘,王传宽,周正虎,孙志虎. 抚育间伐对长白落叶松人工林土壤碳、氮及其组分的影响. 应用生态学报. 2019(05): 1651-1658 .
![]() | |
23. |
Zhenge HUANG,Minyang XIE,Mingbao WEI,Bin HE,Shaozhuang MO,Gang ZHOU,Ji LIANG. Carbon Storage and Distribution of the Mature Pinus massoniana Plantation in Northwest Guangxi. Agricultural Biotechnology. 2019(03): 141-144 .
![]() |
|
24. |
管惠文,董希斌,张甜,曲杭峰,王智勇. 抚育间伐后落叶松天然次生林生境恢复效果的评价. 东北林业大学学报. 2019(07): 6-13+24 .
![]() | |
25. |
戎建涛,张晓红,郜爱玲,王艳英,潘凡群. 不同间伐强度经营对柳杉人工林土壤理化性质的影响. 西北林学院学报. 2019(04): 206-211 .
![]() | |
26. |
董莉莉,赵济川,汪成成,刘红民,高英旭,杨鹤. 抚育间伐后蒙古栎阔叶混交林径级结构及生长动态研究. 西南林业大学学报(自然科学). 2019(06): 98-104 .
![]() | |
27. |
董莉莉,刘红民,汪成成,赵济川,高英旭,黄夏,肖尧. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响. 沈阳农业大学学报. 2019(05): 614-620 .
![]() | |
28. |
韦明宝,王朝健,杨正文,黄振格,王汉敢,何斌. 桂西北马尾松人工林生态系统碳贮量与分布. 亚热带农业研究. 2019(03): 152-156 .
![]() | |
29. |
银彬吾,刘奇林,陆滟灵,何斌,黄振格,谢敏洋. 2种更新方式4年生尾巨桉人工林碳储量及其分布特征. 广西林业科学. 2019(04): 466-471 .
![]() | |
30. |
朱子卉,杨华,张恒,王全军,孙权,杨超. 择伐后落叶松云冷杉林直径结构及生长的动态变化. 北京林业大学学报. 2018(05): 55-62 .
![]() | |
31. |
韦家国,周刚,刘凡胜,杨正文,莫少壮,何斌. 秃杉林和连栽杉木林生态系统C积累及其分布格局. 亚热带农业研究. 2018(01): 29-33 .
![]() | |
32. |
Zhou Gang,He Bin,Wei Jiaguo,Liu Fansheng,Mo Shaozhuang,Yang Zhengwen. Carbon Accumulation and Distribution in Ecosystems of Taiwania flousiana Plantation and Successive Rotation Plantation of Cunninghamia lanceolata. Meteorological and Environmental Research. 2018(04): 11-14+18 .
![]() |
|
33. |
张期奇,董希斌,张甜,曲杭峰,马晓波,管惠文,王智勇,阮加甫,陈蕾. 抚育间伐强度对兴安落叶松中龄林测树因子的影响. 森林工程. 2018(05): 1-7+55 .
![]() | |
34. |
段梦成,王国梁,史君怡,周昊翔. 间伐对油松人工林碳储量的长期影响. 水土保持学报. 2018(05): 190-196 .
![]() | |
35. |
马长明,赵辉,牟洪香,刘炳响. 燕山山地华北落叶松人工林碳密度及分配特征. 水土保持学报. 2017(05): 208-214 .
![]() |