Citation: | Qi Chusheng, Zhan Zhibin, Dai Lu. Analysis methods and characteristic parameters of wood microstructure[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240287 |
Wood is a multi-scale and highly anisotropic natural polymer material, which consists of cellulose, hemicellulose, lignin and other components of a complex three-dimensional network structure. These structures are the key factors affecting micro-macroscopic physical and mechanical properties of wood, and the microstructure and main characteristic parameters of wood are of great significance to the understanding of properties of wood as well as wood modification and processing and utilization. This paper comprehensively analyzes the methods of wood microstructure analysis and summarizes its main characteristic parameters. In terms of analytical methods, microscopic observation, X-ray radiography and diffraction analysis, computed tomography and other technologies were widely used, combined with data acquisition and two-dimensional and three-dimensional imaging methods, can reconstruct wood microstructural models, measure microstructural parameters, and reconstructed structural models revealed clearer micro-morphological features. The microstructural parameters of wood mainly include cellular structure parameters, porosity, cellulose microfilaments and other parameters of wood. At present, the observation and study of microstructure is mostly limited to the micron scale, and the analysis of nanoscale and smaller molecular scale structure is mainly based on theoretical simulation, and the structural analysis methods that can be directly observed and characterized need to be further studied in depth.
[1] |
Chen C, Kuang Y, Zhu S, et al. Structure-property-function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5(9): 642−666. doi: 10.1038/s41578-020-0195-z
|
[2] |
Li W, Zhang Z, Mei C, et al. Understanding the mechanical strength and dynamic structural changes of wood-based products using X-ray computed tomography[J]. Wood Material Science & Engineering, 2022, 18(2): 454−463.
|
[3] |
Wang J, Yang K, Li W, et al. The impact of earlywood and latewood on the compressive stress of thermally modified Douglas fir[J]. Forests, 2023, 14(7): 1376. doi: 10.3390/f14071376
|
[4] |
方旋, 张景朋, 熊怡心, et al. 自然老化杉木梁的分区可处理性[J]. 北京林业大学学报, 2024, 46(11): 124−132. doi: 10.12171/j.1000-1522.20240176
Fang X, Zhang J P, Xiong Y X, et al. Sub-regional treatability of a naturally aging Chinese fir beam[J]. Journal of Beijing Forestry University, 2024, 46(11): 124−132. doi: 10.12171/j.1000-1522.20240176
|
[5] |
王瑜瑶, 马尔妮. 不同预处理方法对木材细胞壁孔隙结构影响[J]. 北京林业大学学报, 2023, 45(11): 140−151. doi: 10.12171/j.1000-1522.20230158
Wang Y Y, Ma E N. Effects of different pretreatment methods on the pore structure of wood cell wall[J]. Journal of Beijing Forestry University, 2023, 45(11): 140−151. doi: 10.12171/j.1000-1522.20230158
|
[6] |
Liu M, Wang J, Xu G, et al. Efficacy of linseed oil-treated wood to improve hydrophobicity, dimensional stability, and thermostability[J]. Wood Research, 2021, 66(5): 777−788. doi: 10.37763/wr.1336-4561/66.5.777788
|
[7] |
Conceição W S D, Matos R S, Melo I D C, et al. Measurement of wood surface roughness in Dinizia excelsa Ducke using an atomic force microscope[J]. Acta Scientiarum Technology, 2022, 44: e56509. doi: 10.4025/actascitechnol.v44i1.56509
|
[8] |
Mao J, Abushammala H, Kasal B. Monitoring the surface aging of wood through its pits using atomic force microscopy with functionalized tips[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609: 125871. doi: 10.1016/j.colsurfa.2020.125871
|
[9] |
Ebner D H, Tortora M, Bedolla D E, et al. Comparative investigation of chemical and structural properties of charred fir wood samples by Raman and FTIR spectroscopy as well as X-ray-micro-CT technology[J]. Holzforschung, 2023, 77(9): 734−742. doi: 10.1515/hf-2023-0024
|
[10] |
Kanbayashi T, Ishikawa A, Matsunaga M, et al. Application of confocal raman microscopy for the analysis of the distribution of wood preservative coatings[J]. Coatings, 2019, 9(10): 621. doi: 10.3390/coatings9100621
|
[11] |
Guo J, Zhou H, Stevanic J S, et al. Effects of ageing on the cell wall and its hygroscopicity of wood in ancient timber construction[J]. Wood Science and Technology, 2017, 52(1): 131−147.
|
[12] |
Mallik A, Tarrío-Saavedra J, Francisco-Fernández M, et al. Classification of wood micrographs by image segmentation[J]. Chemometrics and Intelligent Laboratory Systems, 2011, 107(2): 351−362. doi: 10.1016/j.chemolab.2011.05.005
|
[13] |
Toba K, Yamamoto H, Yoshida M. Mechanical interaction between cellulose microfibrils and matrix substances in wood cell walls induced by repeated wet-and-dry treatment[J]. Cellulose, 2012, 19(4): 1405−1412. doi: 10.1007/s10570-012-9700-x
|
[14] |
Yin Y, Bian M, Song K, et al. Influence of microfibril angle on within-tree variations in the mechanical properties of Chinese fir (Cunninghamia lanceolata)[J]. IAWA Journal, 2011, 32(4): 431−442. doi: 10.1163/22941932-90000069
|
[15] |
Reza M, Ruokolainen J, Vuorinen T. Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electron microscopy[J]. Planta, 2014, 240(3): 565−573. doi: 10.1007/s00425-014-2107-1
|
[16] |
Svedström K, Lucenius J, van den Bulcke J, et al. Hierarchical structure of juvenile hybrid aspen xylem revealed using X-ray scattering and microtomography[J]. Trees, 2012, 26(6): 1793−1804. doi: 10.1007/s00468-012-0748-x
|
[17] |
Kilpeläinen A, Peltola H, Ryyppö A, et al. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration[J]. Tree Physiology, 2003, 23(13): 889−897. doi: 10.1093/treephys/23.13.889
|
[18] |
Evans R, White R M. Art, science and informatics: visualisation of large, complex data sets in high-speed measurement of the microstructure of wood[J]. 2002.
|
[19] |
Bergsten U, Lindeberg J, Rindby A, et al. Batch measurements of wood density on intact or prepared drill cores using x-ray microdensitometry[J]. Wood Science and Technology, 2001, 35(5): 435−452. doi: 10.1007/s002260100106
|
[20] |
Fromm J R H, SautteR I, Matthies D, et al. Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography[J]. Plant Physiology, 2001, 127(2): 416−425. doi: 10.1104/pp.010194
|
[21] |
Martin B, Colin J, Lu P, et al. Monitoring imbibition dynamics at tissue level in Norway spruce using X-ray imaging[J]. Holzforschung, 2021, 75(12): 1081−1096. doi: 10.1515/hf-2020-0269
|
[22] |
Lehnebach R, Campioli M, Gričar J, et al. High-resolution X-Ray computed tomography: a new workflow for the analysis of xylogenesis and intra-seasonal wood biomass production[J]. Frontiers in Plant Science, 2021, 12: 698640. doi: 10.3389/fpls.2021.698640
|
[23] |
Derome D, Griffa M, Koebel M, et al. Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography[J]. Journal of Structural Biology, 2011, 173(1): 180−190. doi: 10.1016/j.jsb.2010.08.011
|
[24] |
Taylor A, Plank B, Standfest G, et al. Beech wood shrinkage observed at the micro-scale by a time series of X-ray computed tomographs (μXCT)[J]. Holzforschong, 2013, 67(2): 201−205. doi: 10.1515/hf-2012-0100
|
[25] |
Feng D, Turner M, Evans P D. Sodium iodide as a contrast agent for X-ray micro-CT of a wood plastic composite[J]. Applied Sciences, 2021, 12(1): 208. doi: 10.3390/app12010208
|
[26] |
Bill J, Daly A, Johnsen Ø, et al. DendroCT – dendrochronology without damage[J]. Dendrochronologia, 2012, 30(3): 223−230. doi: 10.1016/j.dendro.2011.11.002
|
[27] |
Huber J A J, Broman O, Ekevad M, et al. A method for generating finite element models of wood boards from X-ray computed tomography scans[J]. Computers & Structures, 2022, 260: 106702.
|
[28] |
刘晨君, 杨淑敏, 薛紫荞, 等. 计算机断层扫描马尾松缺陷及其图像解译[J]. 北京林业大学学报, 2024, 46(10): 144−152.
Liu C J, Yang S M, Xue Z Q, et al. Computerized tomography of defects in Pinus massoniana and its image interpretation[J]. Journal of Beijing Forestry University, 2024, 46(10): 144−152.
|
[29] |
Trtik P, Dual J, Keunecke D, et al. 3D imaging of microstructure of spruce wood[J]. Journal of Structural Biology, 2007, 159(1): 46−55. doi: 10.1016/j.jsb.2007.02.003
|
[30] |
Hu M, Olsson A, Hall S, et al. Fibre directions at a branch-stem junction in Norway spruce: a microscale investigation using X-ray computed tomography[J]. Wood Science and Technology, 2022, 56(1): 147−169. doi: 10.1007/s00226-021-01353-y
|
[31] |
Page G F, Liu J, Grierson P F. Three-dimensional xylem networks and phyllode properties of co-occurring Acacia[J]. Plant Cell Environ, 2011, 34(12): 2149−2158. doi: 10.1111/j.1365-3040.2011.02411.x
|
[32] |
Koddenberg T, Zauner M, Militz H. Three-dimensional exploration of soft-rot decayed conifer and angiosperm wood by X-Ray micro-computed tomography[J]. Micron, 2020, 134: 102875. doi: 10.1016/j.micron.2020.102875
|
[33] |
Sedighi G M, Boone M N, Mader K, et al. Synchrotron X-ray micro-tomography imaging and analysis of wood degraded by Physisporinus vitreus and Xylaria longipes[J]. Journal of Structural Biology, 2014, 187(2): 149−157. doi: 10.1016/j.jsb.2014.06.003
|
[34] |
Shi J, Liu X, Xia C, et al. Visualization of wood cell structure during cellulose purification via high resolution X-ray CT and spectroscopy[J]. Industrial Crops and Products, 2022, 189: 115869. doi: 10.1016/j.indcrop.2022.115869
|
[35] |
Mayo S C, Chen F, Evans R. Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography[J]. Journal of Structural Biology, 2010, 171(2): 182−188. doi: 10.1016/j.jsb.2010.04.001
|
[36] |
Yang X, Zhao Z, Wang Z, et al. Microstructure identification based on vessel pores feature extraction of high-value hardwood species[J]. BioResources, 2021, 16(3): 5329. doi: 10.15376/biores.16.3.5329-5340
|
[37] |
Steppe K, Cnudde V, Girard C, et al. Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics[J]. Journal of Structural Biology, 2004, 148(1): 11−21. doi: 10.1016/j.jsb.2004.05.001
|
[38] |
Florisson S, Gamstedt E K. An overview of lab-based micro computed tomography aided finite element modelling of wood and its current bottlenecks[J]. Holzforschung, 2023, 77(11−12): 793−815. doi: 10.1515/hf-2023-0061
|
[39] |
Brunel G, Borianne P, Subsol G, et al. Automatic identification and characterization of radial files in light microscopy images of wood[J]. Annals of Botany, 2014, 114(4): 829−840. doi: 10.1093/aob/mcu119
|
[40] |
Endrizzi M. X-ray phase-contrast imaging[J]. Nuclear instruments and methods in physics research section a: accelerators, spectrometers, detectors and associated equipment, 2018, 878: 88−98.
|
[41] |
Yang X, Jiang H, Ma L, et al. Micro image classification of 19 high-value hardwood species based on texture feature fusion[J]. BioResources, 2023, 18(2): 3373−3386. doi: 10.15376/biores.18.2.3373-3386
|
[42] |
Hansson L, Couceiro J, Fjellner B-A. Estimation of shrinkage coefficients in radial and tangential directions from CT images[J]. Wood Material Science & Engineering, 2016, 12(4): 251−256.
|
[43] |
Brodersen C R, Lee E F, Choat B, et al. Automated analysis of three-dimensional xylem networks using high-resolution computed tomography[J]. New Phytologist, 2011, 191(4): 1168−1179. doi: 10.1111/j.1469-8137.2011.03754.x
|
[44] |
Koddenberg T, Militz H. Morphological imaging and quantification of axial xylem tissue in Fraxinus excelsior L. through X-ray micro-computed tomography[J]. Micron, 2018, 111: 28−35. doi: 10.1016/j.micron.2018.05.004
|
[45] |
He X, Qi D. Density and moisture content forecasting based on X-ray computed tomography[J]. European Journal of Wood and Wood Products, 2013, 71(5): 647−652. doi: 10.1007/s00107-013-0722-3
|
[1] | Lou Minghua, Zhang Huiru, Lei Xiangdong, Bai Chao, Yang Tonghui. Relationship model between stand mean height and mean DBH for natural Quercus spp. broadleaved mixed stands[J]. Journal of Beijing Forestry University, 2020, 42(9): 37-50. DOI: 10.12171/j.1000-1522.20190463 |
[2] | PENG Mi, GUO Qing-xi.. Minimum area of the community spatial structure of broadleaf-Korean pine forest in Shengshan Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(12): 21-27. DOI: 10.13332/j.1000-1522.20150519 |
[3] | CAO Shan, JIANG Lu-yao, LI Li-hong, YAO Xiao-yun, ZHANG Qiang, HAN Jing-yi, WANG Ying, LI Hui, LU Hai.. Cloning and enzymatic analysis of medium-chain acyl coenzyme A synthetase in Populus trichocarpa.[J]. Journal of Beijing Forestry University, 2016, 38(7): 9-15. DOI: 10.13332/j.1000-1522.20160121 |
[4] | PAN Chen, REN Bai-guang, GAI Ying. Method of enzymatic synthesis and purification of p-coumaroyl-CoA[J]. Journal of Beijing Forestry University, 2016, 38(3): 120-124. DOI: 10.13332/j.1000-1522.20150366 |
[5] | SHI Jun-na, LIU Mei-qin, LIU Jie, CHEN Yu-zhen, LU Cun-fu. Sequence analysis and expression pattern of AmSTZF encoding an A20/AN1 zinc finger protein in Ammopiptanthus mongolicus.[J]. Journal of Beijing Forestry University, 2012, 34(2): 103-108. |
[6] | FANG Lu-ming, CHAI Hong-ling, TANG Li-hua, XU Ai-jun. An extraction algorithm of a DEM based video visualization domain.[J]. Journal of Beijing Forestry University, 2010, 32(3): 27-32. |
[7] | GAO Lin, GU Hong-bo, LI Wen-bin, WANG Nai-kang, WU Xiao-lan. Intelligent control of seeding system based on SPCE061A[J]. Journal of Beijing Forestry University, 2009, 31(5): 126-130. |
[8] | WANG Ji-jun, , PEI Tie-fan, WANG An-zhi, GUAN De-xin, JIN Chang-jie. Changes in the mean maximum and minimum temperatures in Changbai Mountain, northeastern China in the past 50 years.[J]. Journal of Beijing Forestry University, 2009, 31(2): 50-57. |
[9] | XU Ji-liang, CUI Guo-fa, LI Zhong. Approaches for setting the minimum area of nature reserve[J]. Journal of Beijing Forestry University, 2006, 28(5): 129-132. |
[10] | HUI Gang-ying, XU Hai, HU Yan-bo. Model for forecasting the distribution of the minimum tree-to-tree distances[J]. Journal of Beijing Forestry University, 2006, 28(5): 18-21. |