• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
Citation: Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321

Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model

More Information
  • Received Date: September 25, 2024
  • Revised Date: October 20, 2024
  • Accepted Date: January 12, 2025
  • Available Online: January 20, 2025
  • Objective 

    This paper aims to construct a nonlinear mixed-effects model for the tree height-DBH relationship of Pinus koraiensis, compare the prediction accuracy of various sampling methods and sample sizes, and provide a theoretical basis for understanding the growth patterns of Pinus koraiensis.

    Method 

    This study used 4 441 sets of data from two sample plots in Jiaohe, Jilin Province, and Liangshui, Heilongjiang Province of northeastern China. The data were randomly divided into two parts, with 80% used for modeling and 20% for validation. Fifteen common tree height-DBH models were fitted, and the best-performing model was selected as the base model. Variables such as basal area, dominant height, and quadratic mean diameter were added to the base model to construct the optimal generalized model. Random effects at the plot level were also considered, resulting in the construction of a base mixed-effects model and a generalized mixed-effects model. The fitting ability and prediction accuracy of two fixed-effects models and two nonlinear mixed-effects models were evaluated. We validated the model prediction accuracy using validation data, compared three prediction types: fixed effects model average prediction (FPA), mixed model overall mean response prediction (MPA), and subject response prediction (MPS). Additionally, we analyzed the prediction accuracy and relationship between sample size and four sampling schemes for the mixed model: random sampling, the largest DBH sampling, the smallest DBH sampling, and average tree sampling (samples with DBH close to the average value).

    Result 

    (1)The optimal base model was the Prodan model (R2, RMSE, MAE were 0.841, 3.335 m, 2.492 m, respectively). The generalized model incorporating quadratic mean , dominant height, and basal area had the highest prediction accuracy (R2, RMSE, MAE were 0.914, 2.449 m, 1.816 m, respectively). Introducing plot-level random effects significantly improved model accuracy; the base mixed-effects model had R2, RMSE, MAE of 0.961, 1.652 m, 1.231 m, respectively, and the generalized mixed-effects model had R2, RMSE, MAE of 0.958, 1.719 m, 1.288 m, respectively. (2) Model accuracy tested with validation data showed MPA > FPA > MPS, and prediction accuracy of generalized model was better than base model. (3) Among four sampling schemes, the sampling method of average trees was the best, and the prediction ability was the best when eight trees were selected; in practical application, considering the labor cost and economic cost, the method of selecting five average trees to measure the tree height to estimate the random parameters was also reasonable and feasible.

    Conclusion 

    Incorporating stand factors and plot effects into the base model significantly improves the accuracy of tree height-DBH model for Pinus koraiensis. Additionally, the sampling method using average trees provides higher prediction accuracy. This study explores the relationship between tree height and DBH of Pinus koraiensis under a nonlinear mixed-effects model. It provides a theoretical foundation and practical reference for accurately predicting tree height of Pinus koraiensis, the main constructive species in northeastern China, as well as for subsequent field surveys and management practices.

  • [1]
    卢军, 张会儒, 雷相东, 等. 长白山云冷杉针阔混交林幼树树高--胸径模型[J]. 北京林业大学学报, 2015, 37(11): 10−25.

    Lu J, Zhang H R, Lei X D, et al. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains[J]. Journal of Beijing Forestry University, 2015, 37 (11): 10−25.
    [2]
    Luo W, Kim H S, Zhao X, et al. New forest biomass carbon stock estimates in Northeast Asia based on multisource data[J]. Global Change Biology, 2020, 26(12): 7045−7066. doi: 10.1111/gcb.15376
    [3]
    Sharma R P, Vacek Z, Vacek S, et al. A nonlinear mixed-effects height-to-diameter ratio model for several tree species based on Czech National forest inventory data[J]. Forests, 2019, 10(1): 70. doi: 10.3390/f10010070
    [4]
    李海奎, 法蕾. 基于分级的全国主要树种树高−胸径曲线模型[J]. 林业科学, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013

    Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method[J]. Scientia Silvae Sinicae, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013
    [5]
    Cui K D, Wu X Y, Zhang C Y, et al. Estimating height-diameter relations for structure groups in the natural forests of Northeastern China[J]. Forest Ecology and Management, 2022, 519: 120298. doi: 10.1016/j.foreco.2022.120298
    [6]
    程雯, 武晓昱, 叶尔江·拜克吐尔汉, 等. 基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究[J]. 北京林业大学学报, 2024, 46(2): 28−39.

    Cheng W, Wu X Y, Baketuerhan Y E J, et al. Research on the relationship between tree height and DBH of temperate coniferous and broadleaved mixed forests based on mixed effects and quantile regression[J]. Journal of Beijing Forestry University, 2024, 46(2): 28−39.
    [7]
    符利勇, 张会儒, 李春明, 等. 非线性混合效应模型参数估计方法分析[J]. 林业科学, 2013, 49(1): 114−119. doi: 10.11707/j.1001-7488.20130117

    Fu L Y, Zhang H R, Li C M, et al. Analysis of nonlinear mixed effects model parameter estimation methods[J]. Scientia Silvae Sinicae, 2013, 49(1): 114−119. doi: 10.11707/j.1001-7488.20130117
    [8]
    易达, 李凤日, 马爱云, 等. 基于混合效应模型和分位数回归的长白落叶松枝下高模型构建[J]. 应用生态学报, 2023, 34(4): 1035−1042.

    Yi D, Li F R, Ma A Y, et al. Model construction for height to crown base of Larix olgensis based on mixed-effects model and quantile regression[J]. Chinese Journal of Applied Ecology, 2023, 34(4): 1035−1042.
    [9]
    Gregorie T G. Generalized error structure for forestry yield models[J]. Forest Science, 1987, 33(2): 423−444. doi: 10.1093/forestscience/33.2.423
    [10]
    West P W, Ratkowsky D A, Davis A W. Problems of hypothesis testing of regressions with multiple measurements from individual sampling units[J]. Forest Ecology and Management, 1984, 7(3): 207−224. doi: 10.1016/0378-1127(84)90068-9
    [11]
    Lappi J. A longitudinal analysis of height/diameter curves [J]. Forest Science, 1998, 43(3): 555−570.
    [12]
    王冬至, 张冬燕, 张志东, 等. 基于非线性混合模型的针阔混交林树高与胸径关系[J]. 林业科学, 2016, 52(1): 30−36.

    Wang D Z, Zhang D Y, Zhang Z D, et al. Height-diameter relationship for conifer mixed forest based on nonlinear mixed-effects model[J]. Scientia Silvae Sinicae, 2016, 52(1): 30−36.
    [13]
    曹晓梅, 苗铮, 郝元朔, 等. 基于树种分类的帽儿山阔叶混交林树高−胸径模型[J]. 应用生态学报, 2024, 35(2): 307−320.

    Cao X M, Miao Z, Hao Y S, et al. Height-diameter model of broad-leaved mixed forest based on species classification in Maoershan, Northeast China[J]. Chinese Journal of Applied Ecology, 2024, 35(2): 307−320.
    [14]
    周晏平, 雷泽勇, 赵国军, 等. 沙地樟子松不同树高–胸径模型比较分析[J]. 华南农业大学学报, 2019, 40(3): 75−81. doi: 10.7671/j.issn.1001-411X.201806032

    Zhou Y P, Lei Z Y, Zhao G J, et al. Comparing different height-diameter models of Pinus sylvestris var. mongolica in sandy land[J]. Journal of South China Agricultural University, 2019, 40(3): 75−81. doi: 10.7671/j.issn.1001-411X.201806032
    [15]
    Gomez-Garcia, Dieguez-Aranda, Castedo-Dorado, et al. A comparison of model forms for the development of height-diameter relationships in even-aged stands[J]. Forest Science, 2014, 60(3): 560−568. doi: 10.5849/forsci.12-099
    [16]
    余昆隆, 谭伟, 杨靖, 等. 基于分位数组合的杉木树高−胸径模型[J]. 中南林业科技大学学报, 2022, 42(11): 94−101.

    Yu K L, Tan W, Yang J, et al. Height-diameter models for Cunninghamia lanceolata based on quantile groups[J]. Journal of Central South University of Forestry & Technology, 2022, 42(11): 94−101.
    [17]
    臧颢, 雷相东, 张会儒, 等. 红松树高−胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6): 8−16.

    Zang H, Lei X D, Zhang H R, et al. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8−16.
    [18]
    李婉婷, 姜立春, 万道印. 基于混合效应的兴安落叶松树高与胸径关系模拟[J]. 植物研究, 2014, 34(3): 343−348. doi: 10.7525/j.issn.1673-5102.2014.03.010

    Li W T, Jiang L C, Wan D Y. Simulation of height-diameter relationships for Larix gmelinii based on mixed effects[J]. Bulletin of Botanical Research, 2014, 34(3): 343−348. doi: 10.7525/j.issn.1673-5102.2014.03.010
    [19]
    Stage A R. Prediction of height increment for models of forest growth[Z]. Ogden: U. S. Dept. of Agriculture, 1975.
    [20]
    Wykoff W, Crookston N L, Stage A R. User’s guide to the stand prognosis model[R]. Ogden: U. S. Department of Agriculture, 1982.
    [21]
    Bates D M, Watts D G. Relative curvature measures of nonlinearity[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1980, 42(1): 1−16. doi: 10.1111/j.2517-6161.1980.tb01094.x
    [22]
    Meyer H A. A mathematical expression for height curves[J]. Journal of Forestry, 1940, 38(5): 415−420.
    [23]
    Schumacher F X. A new growth curve and its application to timber yield studies[J]. Journal of Forestry, 1939, 37: 819−820.
    [24]
    Larson B C. Development and growth of even-aged stands of Douglas-fir and grand fir[J]. Canadian Journal of Forest Research, 1986, 16(2): 367−372. doi: 10.1139/x86-063
    [25]
    Curtis R. Height-diameter and height-diameter-age equations for second-growth Douglas-fir[J]. Forest Science, 1967(4): 365−375.
    [26]
    Näslund M. Skogsförsöksanstaltens gallringsförsök i tallskog: primärbearbetning[J]. Meddelanden Från Statens Skogsförsöksanstalt, 1936, 29: 37.
    [27]
    Bertalanffy L V. Quantitative laws in metabolism and growth[J]. The Quarterly Review of Biology, 1957, 32(3): 217−231. doi: 10.1086/401873
    [28]
    Ratkowsky D A. handbook of non-Linear regression models[M]. New York: Marcel and Dekker, 1990: 241.
    [29]
    Pearl R, Reed L J. On the rate of growth of the population of the United States since 1790 and its mathematical representation[J]. Proceedings of the National Academy of Sciences, 1920, 6(6): 275−288. doi: 10.1073/pnas.6.6.275
    [30]
    Winsor C P. The Gompertz curve as a growth curve[J]. Proceedings of the National Academy of Sciences, 1932, 18(1): 1−8. doi: 10.1073/pnas.18.1.1
    [31]
    Prodan M. Growth functions in: forest biometrics[M]. Oxford: Pergamon Press, 1968: 341−394.
    [32]
    Richards F J. A flexible growth function for empirical use[J]. Journal of Experimental Botany, 1959(2): 290−301.
    [33]
    Ciceu A, Garcia-Duro J, Seceleanu I, et al. A generalized nonlinear mixed-effects height–diameter model for Norway spruce in mixed-uneven aged stands[J]. Forest Ecology and Management, 2020, 477: 118507. doi: 10.1016/j.foreco.2020.118507
    [34]
    Bronisz K, Mehtätalo L. Mixed-effects generalized height-diameter model for young silver birch stands on post-agricultural lands[J]. Forest Ecology and Management, 2020, 460: 117901. doi: 10.1016/j.foreco.2020.117901
    [35]
    Santiago-García W, Jacinto-Salinas A H, Rodríguez-Ortiz G, et al. Generalized height-diameter models for five pine species at Southern Mexico[J]. Forest Science and Technology, 2020, 16(2): 49−55. doi: 10.1080/21580103.2020.1746696
    [36]
    陈浩, 罗扬. 马尾松树高−胸径非线性混合效应模型构建[J]. 森林与环境学报, 2021, 41(4): 439−448.

    Chen H, Luo Y. Construction of nonlinear mixed effect height-diameter models for Pinus massoniana[J]. Journal of Forest and Environment, 2021, 41(4): 439−448.
    [37]
    樊伟, 许崇华, 崔珺, 等. 基于混合效应的大别山地区杉木树高−胸径模型比较[J]. 应用生态学报, 2017, 28(9): 2831−2839.

    Fan W, Xu C H, Cui J, et al. Comparisons of height-diameter models of Chinese fir based on mixed effect in Dabie Mountain area, China[J]. Journal of Applied Ecology, 2017, 28(9): 2831−2839.
    [38]
    Zang H, Lei X, Zeng W. Height-diameter equations for larch plantations in Northern and Northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models[J]. Forestry, 2016(4): 89.
    [39]
    Yang Y, Huang S. Allometric modelling of crown width for white spruce by fixed- and mixed-effects models[J]. Forestry Chronicle, 2017, 93(2): 138−147. doi: 10.5558/tfc2017-020
    [40]
    Crecente-Campo F, Tomé M, Soares P, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2010, 259(5): 943−952. doi: 10.1016/j.foreco.2009.11.036
    [41]
    Temesgen H, Monleon V J, Hann D W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests[J]. Canadian Journal of Forest Research, 2008, 38(3): 553−565. doi: 10.1139/X07-104
  • Related Articles

    [1]Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063
    [2]Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
    [3]Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052
    [4]Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. DOI: 10.12171/j.1000-1522.20210497
    [5]Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133
    [6]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [7]DONG Li-hu, LI Feng-ri, JIA Wei-wei.. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation.[J]. Journal of Beijing Forestry University, 2013, 35(6): 14-22.
    [8]DONG Li-hu, LI Feng-ri, JIA Wei-wei. Development of tree biomass model for Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2012, 34(6): 16-22.
    [9]WANG Xiong-bin, YU Xin-xiao, XU Cheng-li, , GU Jian-cai, ZHOU Bin, FAN Min-rui, JIA Guo-dong, LV xi-zhi. Effects of thinning on edge effect of Larix principisrupprechtii plantation.[J]. Journal of Beijing Forestry University, 2009, 31(5): 29-34.
    [10]LI Chun-ming.. Simulating basal area growth of fir plantations using a nonlinear mixed modeling approach.[J]. Journal of Beijing Forestry University, 2009, 31(1): 44-49.
  • Cited by

    Periodical cited type(44)

    1. 韩彦隆,魏亚娟,左小锋,左轶璆,康帅,童国利,李建媛,王永平. 吉兰泰荒漠绿洲过渡带土壤生态化学计量特征及养分恢复状况研究. 水土保持研究. 2025(02): 207-214+223 .
    2. 罗婷,黄甫昭,李健星,陆芳,文淑均,阮枰臻,李先琨. 广西漓江流域喀斯特地区植被不同恢复阶段植物优势种叶片和土壤的生态化学计量特征. 植物资源与环境学报. 2024(02): 80-90 .
    3. 任泽文,陈昕,陈玥,钟曲颖,余泽平,刘骏,杨清培,宋庆妮. 亚热带森林演替中优势种茎干-土壤碳氮磷生态化学计量的变化特征. 江西农业大学学报. 2024(02): 401-410 .
    4. 侯贻菊,姚雾清,杨光能,崔迎春,周华. 黔竹笋期生长特性及配方施肥效应研究. 贵州林业科技. 2024(02): 19-24 .
    5. 刘亚博,冯天骄,王平,卫伟. 黄土丘陵区典型小流域不同植被恢复方式土壤理化性质差异及其影响因素. 生态学报. 2024(15): 6652-6666 .
    6. 史丽娟,吕海涛,张树梓,李联地,任启文,冯广. 白洋淀上游典型林分类型土壤理化性质及其化学计量特征. 土壤通报. 2024(04): 960-967 .
    7. 武仁杰,邢玮,葛之葳,毛岭峰,彭思利. 4种林分凋落叶不同分解阶段化学计量特征. 浙江农林大学学报. 2023(01): 155-163 .
    8. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    9. 刘根,岳翰林,陈雨志,汪富资,李先宝,代智蓝,李德欢,李思雨,卫万荣. 3种修复措施对高原高速公路边坡土壤化学计量特征的影响. 草业科学. 2023(01): 71-78 .
    10. 王艺伟,仇模升,孙彩丽. 植物反馈作用对火棘群落土壤养分、酶活性及化学计量特征的影响. 中南林业科技大学学报. 2023(03): 127-134 .
    11. 梁楚欣,范弢,陈培云. 滇东石漠化坡地不同恢复模式下云南松林土壤碳氮磷化学计量特征及其影响因子. 浙江农林大学学报. 2023(03): 511-519 .
    12. 白金珂,李笑雨,王力. 1980s与2020s青藏高原南部土壤质量变化. 应用生态学报. 2023(05): 1367-1374 .
    13. 徐子涵,王磊,崔明,刘玉国,赵紫晴,李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征. 南京林业大学学报(自然科学版). 2023(03): 173-181 .
    14. 何芳远,苏权,陈坤铨,陈善栋,姜勇,罗明,梁士楚. 基于功能性状及系统发育的桂林喀斯特石山群落构建. 广西师范大学学报(自然科学版). 2023(03): 171-181 .
    15. 吴丹,温晨,卫伟,张钦弟. 黄土高原小流域不同植物群落土壤生态化学计量的垂直变化特征. 广西植物. 2023(05): 923-935 .
    16. 宁静,杨磊,曹建华,李亮. 基于文献计量分析的岩溶区植被恢复研究现状与热点. 中国岩溶. 2023(02): 321-336 .
    17. 李雪梅,舒英格. 不同土地利用类型下土壤养分变化及生态化学计量特征分析. 中国农学通报. 2023(28): 62-69 .
    18. 周士锋,魏亚娟,何磊,王项飞,刘美萍,刘澜波. 包头市南海湿地不同季节土壤养分分布特征. 北方园艺. 2023(20): 69-76 .
    19. 侯贻菊,姚雾清,杨光能,崔迎春,周华,张喜. 黔竹秆形结构和地上生物量分配格局研究. 竹子学报. 2023(04): 51-57 .
    20. 胡林安,邱江梅,李强. 云南岩溶断陷盆地植被演替土壤碳氮磷化学计量学特征. 中国岩溶. 2023(06): 1213-1223 .
    21. 袁在翔,关庆伟,李俊杰,韩梦豪,金雪梅,陈霞. 不同植被恢复模式对紫金山森林土壤理化性质的影响. 东北林业大学学报. 2022(01): 52-57 .
    22. 曹全恒 ,胡健 ,陈雪玲 ,孙梅玲 ,刘小龙 ,杨丽雪 ,周青平 . 川西北沙地植被恢复对土壤碳氮磷及生态化学计量特征的影响. 草地学报. 2022(03): 523-531 .
    23. 蔡雅梅,冯民权,肖瑜. 人类活动对河岸带植被氮磷生态化学计量特征的影响——以汾河临汾段为例. 水土保持通报. 2022(01): 17-25 .
    24. 孟海,王海燕,侯文宁,赵晗,宁一泓. 重庆笋溪河流域河岸带水体-土壤-植物的氮磷特征及影响因素. 水土保持学报. 2022(02): 275-282+291 .
    25. 章润阳,钱前,刘坤平,梁月明,张伟,靳振江,潘复静. 喀斯特不同土地利用方式和恢复模式对土壤酶活性C∶N∶P比值的影响. 广西植物. 2022(06): 970-982 .
    26. 王杰. 河岸带土壤氮磷时空分布及影响因素分析. 水土保持应用技术. 2022(04): 13-16 .
    27. 孙渝雯,马赞文,陶贞,张乾柱,唐文魁,吴迪,钟庆祥,王振刚,丁健. 海南岛西南部土壤生物硅分布的时空差异及其驱动机制. 生态学报. 2022(17): 7092-7104 .
    28. 张萌,沈雅飞,陈天,王丽君,曾立雄,孙鹏飞,肖文发,田耀武,程瑞梅. 宜阳县不同森林类型土壤化学计量特征. 陆地生态系统与保护学报. 2022(02): 1-8 .
    29. 陈培云,范弢,何停,户红红. 滇东岩溶高原不同恢复阶段云南松林叶片-枯落物-土壤碳氮磷化学计量特征. 应用与环境生物学报. 2022(06): 1549-1556 .
    30. 刘翔,张连凯,黄超,徐灿,马一奇,杨慧. 广西岩溶区芒果园土壤碳氮磷化学计量特征. 南方农业学报. 2022(12): 3346-3356 .
    31. 李强. 土地利用方式对岩溶断陷盆地土壤细菌和真核生物群落结构的影响. 地球学报. 2021(03): 417-425 .
    32. 陈云,李玉强,王旭洋,牛亚毅. 中国典型生态脆弱区生态化学计量学研究进展. 生态学报. 2021(10): 4213-4225 .
    33. 蔡雅梅,冯民权. 汾河河岸带土壤氮、磷的时空分布规律及其影响因素研究. 水土保持学报. 2021(04): 222-229+236 .
    34. 蔡国俊,锁盆春,张丽敏,符裕红,李安定. 黔南喀斯特峰丛洼地3种建群树种不同器官C、N、P化学计量特征. 贵州师范大学学报(自然科学版). 2021(05): 36-44 .
    35. 魏亚娟,汪季,党晓宏,韩彦隆,高岩,李鹏,金山. 白刺灌丛沙堆演化过程中叶片C、N、P、K含量及其生态化学计量的变化特征. 中南林业科技大学学报. 2021(10): 102-110+139 .
    36. 杨洪炳,肖以华,李明,许涵,史欣,郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系. 生态环境学报. 2021(10): 1976-1989 .
    37. 陈剑,王四海,杨卫,吴超. 外来入侵植物肿柄菊群落动态变化特征. 生态学杂志. 2020(02): 469-477 .
    38. 郑鸾,龙翠玲. 茂兰喀斯特森林不同地形土壤生态化学计量特征. 南方农业学报. 2020(03): 545-551 .
    39. 夏光辉,郭青霞,卢庆民,杜轶,康庆. 黄土丘陵区不同土地利用方式下土壤养分及生态化学计量特征. 水土保持通报. 2020(02): 140-147+153 .
    40. 吴鹏,崔迎春,赵文君,侯贻菊,朱军,丁访军,杨文斌. 茂兰喀斯特区68种典型植物叶片化学计量特征. 生态学报. 2020(14): 5063-5080 .
    41. 朱平宗,张光辉,杨文利,赵建民. 红壤区林地浅沟不同植被类型土壤生态化学计量特征. 水土保持研究. 2020(06): 60-65 .
    42. 余杭,罗清虎,李松阳,林勇明,王道杰. 灾害干扰受损森林土壤的碳、氮、磷初期恢复特征与变异性. 山地学报. 2020(04): 532-541 .
    43. 郭汝凤,刘鑫铭,李冠军,黄婷,吴承祯,林勇明,李键. 武夷山人工湿地系统植物生长期内土壤-植物碳氮磷变化特点. 应用与环境生物学报. 2020(02): 433-441 .
    44. 闫丽娟,王海燕,李广,吴江琪. 黄土丘陵区4种典型植被对土壤养分及酶活性的影响. 水土保持学报. 2019(05): 190-196+204 .

    Other cited types(42)

Catalog

    Article views (86) PDF downloads (28) Cited by(86)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return