Citation: | Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321 |
This paper aims to construct a nonlinear mixed-effects model for the tree height-DBH relationship of Pinus koraiensis, compare the prediction accuracy of various sampling methods and sample sizes, and provide a theoretical basis for understanding the growth patterns of Pinus koraiensis.
This study used 4 441 sets of data from two sample plots in Jiaohe, Jilin Province, and Liangshui, Heilongjiang Province of northeastern China. The data were randomly divided into two parts, with 80% used for modeling and 20% for validation. Fifteen common tree height-DBH models were fitted, and the best-performing model was selected as the base model. Variables such as basal area, dominant height, and quadratic mean diameter were added to the base model to construct the optimal generalized model. Random effects at the plot level were also considered, resulting in the construction of a base mixed-effects model and a generalized mixed-effects model. The fitting ability and prediction accuracy of two fixed-effects models and two nonlinear mixed-effects models were evaluated. We validated the model prediction accuracy using validation data, compared three prediction types: fixed effects model average prediction (FPA), mixed model overall mean response prediction (MPA), and subject response prediction (MPS). Additionally, we analyzed the prediction accuracy and relationship between sample size and four sampling schemes for the mixed model: random sampling, the largest DBH sampling, the smallest DBH sampling, and average tree sampling (samples with DBH close to the average value).
(1)The optimal base model was the Prodan model (R2, RMSE, MAE were 0.841, 3.335 m, 2.492 m, respectively). The generalized model incorporating quadratic mean , dominant height, and basal area had the highest prediction accuracy (R2, RMSE, MAE were 0.914, 2.449 m, 1.816 m, respectively). Introducing plot-level random effects significantly improved model accuracy; the base mixed-effects model had R2, RMSE, MAE of 0.961, 1.652 m, 1.231 m, respectively, and the generalized mixed-effects model had R2, RMSE, MAE of 0.958, 1.719 m, 1.288 m, respectively. (2) Model accuracy tested with validation data showed MPA > FPA > MPS, and prediction accuracy of generalized model was better than base model. (3) Among four sampling schemes, the sampling method of average trees was the best, and the prediction ability was the best when eight trees were selected; in practical application, considering the labor cost and economic cost, the method of selecting five average trees to measure the tree height to estimate the random parameters was also reasonable and feasible.
Incorporating stand factors and plot effects into the base model significantly improves the accuracy of tree height-DBH model for Pinus koraiensis. Additionally, the sampling method using average trees provides higher prediction accuracy. This study explores the relationship between tree height and DBH of Pinus koraiensis under a nonlinear mixed-effects model. It provides a theoretical foundation and practical reference for accurately predicting tree height of Pinus koraiensis, the main constructive species in northeastern China, as well as for subsequent field surveys and management practices.
[1] |
卢军, 张会儒, 雷相东, 等. 长白山云冷杉针阔混交林幼树树高--胸径模型[J]. 北京林业大学学报, 2015, 37(11): 10−25.
Lu J, Zhang H R, Lei X D, et al. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains[J]. Journal of Beijing Forestry University, 2015, 37 (11): 10−25.
|
[2] |
Luo W, Kim H S, Zhao X, et al. New forest biomass carbon stock estimates in Northeast Asia based on multisource data[J]. Global Change Biology, 2020, 26(12): 7045−7066. doi: 10.1111/gcb.15376
|
[3] |
Sharma R P, Vacek Z, Vacek S, et al. A nonlinear mixed-effects height-to-diameter ratio model for several tree species based on Czech National forest inventory data[J]. Forests, 2019, 10(1): 70. doi: 10.3390/f10010070
|
[4] |
李海奎, 法蕾. 基于分级的全国主要树种树高−胸径曲线模型[J]. 林业科学, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013
Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method[J]. Scientia Silvae Sinicae, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013
|
[5] |
Cui K D, Wu X Y, Zhang C Y, et al. Estimating height-diameter relations for structure groups in the natural forests of Northeastern China[J]. Forest Ecology and Management, 2022, 519: 120298. doi: 10.1016/j.foreco.2022.120298
|
[6] |
程雯, 武晓昱, 叶尔江·拜克吐尔汉, 等. 基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究[J]. 北京林业大学学报, 2024, 46(2): 28−39.
Cheng W, Wu X Y, Baketuerhan Y E J, et al. Research on the relationship between tree height and DBH of temperate coniferous and broadleaved mixed forests based on mixed effects and quantile regression[J]. Journal of Beijing Forestry University, 2024, 46(2): 28−39.
|
[7] |
符利勇, 张会儒, 李春明, 等. 非线性混合效应模型参数估计方法分析[J]. 林业科学, 2013, 49(1): 114−119. doi: 10.11707/j.1001-7488.20130117
Fu L Y, Zhang H R, Li C M, et al. Analysis of nonlinear mixed effects model parameter estimation methods[J]. Scientia Silvae Sinicae, 2013, 49(1): 114−119. doi: 10.11707/j.1001-7488.20130117
|
[8] |
易达, 李凤日, 马爱云, 等. 基于混合效应模型和分位数回归的长白落叶松枝下高模型构建[J]. 应用生态学报, 2023, 34(4): 1035−1042.
Yi D, Li F R, Ma A Y, et al. Model construction for height to crown base of Larix olgensis based on mixed-effects model and quantile regression[J]. Chinese Journal of Applied Ecology, 2023, 34(4): 1035−1042.
|
[9] |
Gregorie T G. Generalized error structure for forestry yield models[J]. Forest Science, 1987, 33(2): 423−444. doi: 10.1093/forestscience/33.2.423
|
[10] |
West P W, Ratkowsky D A, Davis A W. Problems of hypothesis testing of regressions with multiple measurements from individual sampling units[J]. Forest Ecology and Management, 1984, 7(3): 207−224. doi: 10.1016/0378-1127(84)90068-9
|
[11] |
Lappi J. A longitudinal analysis of height/diameter curves [J]. Forest Science, 1998, 43(3): 555−570.
|
[12] |
王冬至, 张冬燕, 张志东, 等. 基于非线性混合模型的针阔混交林树高与胸径关系[J]. 林业科学, 2016, 52(1): 30−36.
Wang D Z, Zhang D Y, Zhang Z D, et al. Height-diameter relationship for conifer mixed forest based on nonlinear mixed-effects model[J]. Scientia Silvae Sinicae, 2016, 52(1): 30−36.
|
[13] |
曹晓梅, 苗铮, 郝元朔, 等. 基于树种分类的帽儿山阔叶混交林树高−胸径模型[J]. 应用生态学报, 2024, 35(2): 307−320.
Cao X M, Miao Z, Hao Y S, et al. Height-diameter model of broad-leaved mixed forest based on species classification in Maoershan, Northeast China[J]. Chinese Journal of Applied Ecology, 2024, 35(2): 307−320.
|
[14] |
周晏平, 雷泽勇, 赵国军, 等. 沙地樟子松不同树高–胸径模型比较分析[J]. 华南农业大学学报, 2019, 40(3): 75−81. doi: 10.7671/j.issn.1001-411X.201806032
Zhou Y P, Lei Z Y, Zhao G J, et al. Comparing different height-diameter models of Pinus sylvestris var. mongolica in sandy land[J]. Journal of South China Agricultural University, 2019, 40(3): 75−81. doi: 10.7671/j.issn.1001-411X.201806032
|
[15] |
Gomez-Garcia, Dieguez-Aranda, Castedo-Dorado, et al. A comparison of model forms for the development of height-diameter relationships in even-aged stands[J]. Forest Science, 2014, 60(3): 560−568. doi: 10.5849/forsci.12-099
|
[16] |
余昆隆, 谭伟, 杨靖, 等. 基于分位数组合的杉木树高−胸径模型[J]. 中南林业科技大学学报, 2022, 42(11): 94−101.
Yu K L, Tan W, Yang J, et al. Height-diameter models for Cunninghamia lanceolata based on quantile groups[J]. Journal of Central South University of Forestry & Technology, 2022, 42(11): 94−101.
|
[17] |
臧颢, 雷相东, 张会儒, 等. 红松树高−胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6): 8−16.
Zang H, Lei X D, Zhang H R, et al. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8−16.
|
[18] |
李婉婷, 姜立春, 万道印. 基于混合效应的兴安落叶松树高与胸径关系模拟[J]. 植物研究, 2014, 34(3): 343−348. doi: 10.7525/j.issn.1673-5102.2014.03.010
Li W T, Jiang L C, Wan D Y. Simulation of height-diameter relationships for Larix gmelinii based on mixed effects[J]. Bulletin of Botanical Research, 2014, 34(3): 343−348. doi: 10.7525/j.issn.1673-5102.2014.03.010
|
[19] |
Stage A R. Prediction of height increment for models of forest growth[Z]. Ogden: U. S. Dept. of Agriculture, 1975.
|
[20] |
Wykoff W, Crookston N L, Stage A R. User’s guide to the stand prognosis model[R]. Ogden: U. S. Department of Agriculture, 1982.
|
[21] |
Bates D M, Watts D G. Relative curvature measures of nonlinearity[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1980, 42(1): 1−16. doi: 10.1111/j.2517-6161.1980.tb01094.x
|
[22] |
Meyer H A. A mathematical expression for height curves[J]. Journal of Forestry, 1940, 38(5): 415−420.
|
[23] |
Schumacher F X. A new growth curve and its application to timber yield studies[J]. Journal of Forestry, 1939, 37: 819−820.
|
[24] |
Larson B C. Development and growth of even-aged stands of Douglas-fir and grand fir[J]. Canadian Journal of Forest Research, 1986, 16(2): 367−372. doi: 10.1139/x86-063
|
[25] |
Curtis R. Height-diameter and height-diameter-age equations for second-growth Douglas-fir[J]. Forest Science, 1967(4): 365−375.
|
[26] |
Näslund M. Skogsförsöksanstaltens gallringsförsök i tallskog: primärbearbetning[J]. Meddelanden Från Statens Skogsförsöksanstalt, 1936, 29: 37.
|
[27] |
Bertalanffy L V. Quantitative laws in metabolism and growth[J]. The Quarterly Review of Biology, 1957, 32(3): 217−231. doi: 10.1086/401873
|
[28] |
Ratkowsky D A. handbook of non-Linear regression models[M]. New York: Marcel and Dekker, 1990: 241.
|
[29] |
Pearl R, Reed L J. On the rate of growth of the population of the United States since 1790 and its mathematical representation[J]. Proceedings of the National Academy of Sciences, 1920, 6(6): 275−288. doi: 10.1073/pnas.6.6.275
|
[30] |
Winsor C P. The Gompertz curve as a growth curve[J]. Proceedings of the National Academy of Sciences, 1932, 18(1): 1−8. doi: 10.1073/pnas.18.1.1
|
[31] |
Prodan M. Growth functions in: forest biometrics[M]. Oxford: Pergamon Press, 1968: 341−394.
|
[32] |
Richards F J. A flexible growth function for empirical use[J]. Journal of Experimental Botany, 1959(2): 290−301.
|
[33] |
Ciceu A, Garcia-Duro J, Seceleanu I, et al. A generalized nonlinear mixed-effects height–diameter model for Norway spruce in mixed-uneven aged stands[J]. Forest Ecology and Management, 2020, 477: 118507. doi: 10.1016/j.foreco.2020.118507
|
[34] |
Bronisz K, Mehtätalo L. Mixed-effects generalized height-diameter model for young silver birch stands on post-agricultural lands[J]. Forest Ecology and Management, 2020, 460: 117901. doi: 10.1016/j.foreco.2020.117901
|
[35] |
Santiago-García W, Jacinto-Salinas A H, Rodríguez-Ortiz G, et al. Generalized height-diameter models for five pine species at Southern Mexico[J]. Forest Science and Technology, 2020, 16(2): 49−55. doi: 10.1080/21580103.2020.1746696
|
[36] |
陈浩, 罗扬. 马尾松树高−胸径非线性混合效应模型构建[J]. 森林与环境学报, 2021, 41(4): 439−448.
Chen H, Luo Y. Construction of nonlinear mixed effect height-diameter models for Pinus massoniana[J]. Journal of Forest and Environment, 2021, 41(4): 439−448.
|
[37] |
樊伟, 许崇华, 崔珺, 等. 基于混合效应的大别山地区杉木树高−胸径模型比较[J]. 应用生态学报, 2017, 28(9): 2831−2839.
Fan W, Xu C H, Cui J, et al. Comparisons of height-diameter models of Chinese fir based on mixed effect in Dabie Mountain area, China[J]. Journal of Applied Ecology, 2017, 28(9): 2831−2839.
|
[38] |
Zang H, Lei X, Zeng W. Height-diameter equations for larch plantations in Northern and Northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models[J]. Forestry, 2016(4): 89.
|
[39] |
Yang Y, Huang S. Allometric modelling of crown width for white spruce by fixed- and mixed-effects models[J]. Forestry Chronicle, 2017, 93(2): 138−147. doi: 10.5558/tfc2017-020
|
[40] |
Crecente-Campo F, Tomé M, Soares P, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2010, 259(5): 943−952. doi: 10.1016/j.foreco.2009.11.036
|
[41] |
Temesgen H, Monleon V J, Hann D W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests[J]. Canadian Journal of Forest Research, 2008, 38(3): 553−565. doi: 10.1139/X07-104
|
[1] | Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063 |
[2] | Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321 |
[3] | Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052 |
[4] | Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. DOI: 10.12171/j.1000-1522.20210497 |
[5] | Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133 |
[6] | ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008 |
[7] | DONG Li-hu, LI Feng-ri, JIA Wei-wei.. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation.[J]. Journal of Beijing Forestry University, 2013, 35(6): 14-22. |
[8] | DONG Li-hu, LI Feng-ri, JIA Wei-wei. Development of tree biomass model for Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2012, 34(6): 16-22. |
[9] | WANG Xiong-bin, YU Xin-xiao, XU Cheng-li, , GU Jian-cai, ZHOU Bin, FAN Min-rui, JIA Guo-dong, LV xi-zhi. Effects of thinning on edge effect of Larix principisrupprechtii plantation.[J]. Journal of Beijing Forestry University, 2009, 31(5): 29-34. |
[10] | LI Chun-ming.. Simulating basal area growth of fir plantations using a nonlinear mixed modeling approach.[J]. Journal of Beijing Forestry University, 2009, 31(1): 44-49. |