• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hou Shihang, Ren Shunqiang, Wang Sichen, Zhang Jichuan, Fan Yongming. Isoprene copolymer-modified lignin to reinforce rubber composites[J]. Journal of Beijing Forestry University, 2025, 47(3): 162-170. DOI: 10.12171/j.1000-1522.20240401
Citation: Hou Shihang, Ren Shunqiang, Wang Sichen, Zhang Jichuan, Fan Yongming. Isoprene copolymer-modified lignin to reinforce rubber composites[J]. Journal of Beijing Forestry University, 2025, 47(3): 162-170. DOI: 10.12171/j.1000-1522.20240401

Isoprene copolymer-modified lignin to reinforce rubber composites

More Information
  • Received Date: November 26, 2024
  • Revised Date: December 17, 2024
  • Accepted Date: January 01, 2025
  • Available Online: January 05, 2025
  • Objective 

    Lignin is a naturally occurring polymer with moderate polarity, and its compatibility with rubber matrix is insufficient. As a reinforcing filler in the rubber industry, it is difficult to achieve a direct reinforcement effect on rubber. To reduce the polarity of lignin and improve its compatibility with non-polar rubber, a new type of copolymer-modified lignin material had been developed.

    Method 

    Lignin was modified by acylation with acrylolyl chloride, and the acylated lignin was copolymerized with isoprene via free radical copolymerization. This process introduced long-chain alkyl side groups into lignin macromolecule, resulting in the preparation of isoprene/acylated lignin copolymer material (ALI). Subsequently, the structural changes of modified lignin, dispersion properties of ALI in rubber matrix, and the mechanical properties of natural rubber composites were tested and analyzed.

    Result 

    The hydroxyl content of modified lignin material decreased, and the contact angle increased from 66.13° to 80.16°, indicating a decrease in molecular polarity and an improved compatibility with rubber matrix. When the ALI content was 5 g, the tensile strength of composite material reached 20.61 MPa, which was similar to that of carbon black-filled sample. The elongation at break reached 581.20%, which was an increase of 42.40% compared with carbon black-filled sample. This demonstrated that the modified lignin material had good dispersion in filler-rubber network, leading to reinforcement of rubber matrix.

    Conclusion 

    The isoprene/acetylated lignin copolymer material prepared in this study successfully improves the compatibility between lignin and rubber matrix. The natural rubber composites exhibite good strength and toughness, achieving reinforcement of natural rubber.

  • [1]
    Qiu J, Yuan S, Xiao H, et al. Study on lignin amination for lignin/SiO2 nano-hybrids towards sustainable natural rubber composites[J]. International Journal of Biological Macromolecules, 2023, 233: 123547. doi: 10.1016/j.ijbiomac.2023.123547
    [2]
    Song Y, Lin G, Zhang L, et al. Synergistic effect of hybrid montmorillonite materials on the wear resistance of natural rubber/butadiene rubber composites[J]. Journal of Applied Polymer Science, 2022, 139(26): e52464. doi: 10.1002/app.52464
    [3]
    Zheng L, Jerrams S, Xu Z, et al. Enhanced gas barrier properties of graphene oxide/rubber composites with strong interfaces constructed by graphene oxide and sulfur[J]. Chemical Engineering Journal, 2020, 383: 123100. doi: 10.1016/j.cej.2019.123100
    [4]
    Barana D, Orlandi M, Zoia L, et al. Lignin based functional additives for natural rubber[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11843−11852.
    [5]
    何忠禹. 木质素/硅基复合材料的制备与改性及其高值化应用的研究[D]. 吉林: 吉林大学, 2023.

    He Z Y. Preparation and modification of lignin/silicon-based composites and study on their high-value applications [D]. Jilin: Jilin University, 2023.
    [6]
    Datta J, Parcheta P. A comparative study on selective properties of kraft lignin-natural rubber composites containing different plasticizers[J]. Iranian Polymer Journal, 2017, 26(6): 453−466. doi: 10.1007/s13726-017-0534-0
    [7]
    Jiang C, He H, Yao X, et al. The aggregation structure regulation of lignin by chemical modification and its effect on the property of lignin/styrene-butadiene rubber composites[J]. Journal of Applied Polymer Science, 2018, 135(5): 45759. doi: 10.1002/app.45759
    [8]
    Hosseinmardi A, Amiralian N, Hayati A N, et al. Toughening of natural rubber nanocomposites by the incorporation of nanoscale lignin combined with an industrially relevant leaching process[J]. Industrial Crops and Products, 2021, 159: 113063. doi: 10.1016/j.indcrop.2020.113063
    [9]
    Zhao X, Zhang Z, Pang J, et al. Study on the preparation of epoxy resin materials from nano-lignin polyols[J]. Industrial Crops and Products, 2022, 185: 115158. doi: 10.1016/j.indcrop.2022.115158
    [10]
    Shorey R, Gupta A, Mekonnen T H. Hydrophobic modification of lignin for rubber composites[J]. Industrial Crops and Products, 2021, 174: 114189. doi: 10.1016/j.indcrop.2021.114189
    [11]
    Ferruti F, Carnevale M, Giannini L, et al. Mechanochemical methacrylation of lignin for biobased reinforcing filler in rubber compounds[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(37): 14028−14037.
    [12]
    Abid U, Gill Y Q, Irfan M S, et al. Potential applications of polycarbohydrates, lignin, proteins, polyacids, and other renewable materials for the formulation of green elastomers[J]. International Journal of Biological Macromolecules, 2021, 181: 1−29. doi: 10.1016/j.ijbiomac.2021.03.057
    [13]
    辛明泽. 特种异戊二烯基弹性体的设计与制备[D]. 北京: 北京化工大学, 2019.

    Xin M Z. Design and preparation of special isoprene-based elastomers [D]. Beijing: Beijing University of Chemical Technology, 2019.
    [14]
    Xie L, Zhang T, Karrar E, et al. Highly efficient synthesis of 4, 4-dimethylsterol oleates using acyl chloride method through esterification[J]. Food Chemistry, 2021, 364: 130140. doi: 10.1016/j.foodchem.2021.130140
    [15]
    Luo S, Cao J, McDonald A G. Esterification of industrial lignin and its effect on the resulting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or polypropylene blends[J]. Industrial Crops and Products, 2017, 97: 281−291. doi: 10.1016/j.indcrop.2016.12.024
    [16]
    Zhou M, Wang D, Yang D, et al. Avermectin loaded nanosphere prepared from acylated alkali lignin showed anti-photolysis property and controlled release performance[J]. Industrial Crops and Products, 2019, 137: 453−459. doi: 10.1016/j.indcrop.2019.04.037
    [17]
    Kazzaz A E, Fatehi P. Technical lignin and its potential modification routes: a mini-review[J]. Industrial Crops and Products, 2020, 154: 112732. doi: 10.1016/j.indcrop.2020.112732
    [18]
    Wang X, Guo Y, Zhou J, et al. Structural changes of poplar wood lignin after supercritical pretreatment using carbon dioxide and ethanol-water as co-solvents[J]. RSC Advances, 2017, 7(14): 8314−8322. doi: 10.1039/C6RA26122A
    [19]
    Holmberg A L, Nguyen N A, Karavolias M G, et al. Softwood lignin-based methacrylate polymers with tunable thermal and viscoelastic properties[J]. Macromolecules, 2016, 49(4): 1286−1295. doi: 10.1021/acs.macromol.5b02316
    [20]
    Poyraz B, Guner Y, Tozluoglu A, et al. Cellulose and lignin in place of EPDM and carbon black for automotive sealing profiles[J]. International Journal of Biological Macromolecules, 2023, 236: 123964. doi: 10.1016/j.ijbiomac.2023.123964
    [21]
    Aini N A M, Othman N, Hussin M H, et al. Efficiency of interaction between hybrid fillers carbon black/lignin with various rubber-based compatibilizer, epoxidized natural rubber, and liquid butadiene rubber in NR/BR composites: mechanical, flexibility and dynamical properties[J]. Industrial Crops and Products, 2022, 185: 115167. doi: 10.1016/j.indcrop.2022.115167
    [22]
    Barana D, Ali S D, Salanti A, et al. Influence of lignin features on thermal stability and mechanical properties of natural rubber compounds[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5258−5267.
    [23]
    Datta J, Parcheta P, Surowka J. Softwood-lignin/natural rubber composites containing novel plasticizing agent: preparation and characterization[J]. Industrial Crops and Products, 2017, 95: 675−685. doi: 10.1016/j.indcrop.2016.11.036
    [24]
    Bras J, Hassan M L, Bruzesse C, et al. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites[J]. Industrial Crops and Products, 2010, 32(3): 627−633. doi: 10.1016/j.indcrop.2010.07.018
    [25]
    Jiang C, Shen H, Bi X, et al. A green dual-phase carbon-silica nanohybrid derived from black liquor lignin for reinforcing styrene-butadiene rubber[J]. Composites Science and Technology, 2022, 230: 109775. doi: 10.1016/j.compscitech.2022.109775
    [26]
    Li Y, Han B, Wen S, et al. Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites[J]. Composites Part A-Applied Science and Manufacturing, 2014, 62: 52−59. doi: 10.1016/j.compositesa.2014.03.007
    [27]
    Zhong B, Jia Z, Luo Y, et al. Understanding the effect of filler shape induced immobilized rubber on the interfacial and mechanical strength of rubber composites[J]. Polymer Testing, 2017, 58: 31−39. doi: 10.1016/j.polymertesting.2016.12.010
    [28]
    Mattsson J, Forrest J A, Borjesson L. Quantifying glass transition behavior in ultrathin free-standing polymer films[J]. Physical Review E, 2000, 62: 5187−5200. doi: 10.1103/PhysRevE.62.5187
    [29]
    朱时祥, 徐新建, 李明, 等. 木质素/无机填料复合补强橡胶的研究进展[J]. 生物加工过程, 2020, 18(5): 612−618. doi: 10.3969/j.issn.1672-3678.2020.05.011

    Zhu S X, Xu X J, Li M, et al. Advance in reinforcing rubber with lignin/inorganic fillers[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(5): 612−618. doi: 10.3969/j.issn.1672-3678.2020.05.011
  • Related Articles

    [1]Yi Ziyue, Li Junjie, Sun Hailong, Chen Meiqing, Li Shuang, Xiang Wei. Contribution rate of climate factors to radial growth of main coniferous species in spurce-fir conifer mixed forest of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(5): 55-63. DOI: 10.12171/j.1000-1522.20220332
    [2]Sun Yanan, Liu Yajing, Sun Zhao, Luo Mi, Zhang Yungen, Sun Yujun. Radial growth of Cunninghamia lanceolata and its response to climate in Jiangle National Forest Farm, Fujian Province of eastern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 18-27. DOI: 10.12171/j.1000-1522.20220373
    [3]Gong Xiaoqing, Xie Rong, Yang Hua. Response of radial growth of three common tree species to climate change in a spruce-fir mixed stand in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(4): 1-10. DOI: 10.12171/j.1000-1522.20210479
    [4]Wang Tong, Sun Yujun, Qiao Jingjing. Response of Pinus massoniana tree-ring width in the Jiangle Area of Fujian Province to climate change[J]. Journal of Beijing Forestry University, 2019, 41(9): 30-39. DOI: 10.13332/j.1000-1522.20190067
    [5]Zhang Xiao, Pan Leilei, Semyung Kwon, Liu Yanshu, Yang Xiaohui, Shi Zhongjie. Climatological response of radial growth for Pinus sylvestris var. mongolica to drought in Hulun Buir Sandland, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2018, 40(7): 27-35. DOI: 10.13332/j.1000-1522.20170467
    [6]YAN Bo-qian, LIN Wan-zhong, LIU Qi-jing, YU Jian. Age-dependent radial growth responses of Larix chinensis to climatic factors in Qinling Mountains, northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 58-65. DOI: 10.13332/j.1000-1522.20170161
    [7]YU Jia-lin, ZHANG Wei-guo, TIAN Kun, SONG Wei-hong, LI Qiu-ping, YANG Rong, ZHANG Yun. Response of radial growth of three conifer trees to climate change at their upper distribution limits in Potatso National Park, Shangri-La, southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 43-51. DOI: 10.13332/j.1000-1522.20160184
    [8]GAO Lu-shuang, WANG Xiao-ming, ZHAO Xiu-hai.. Growth response of two coexisting species to climate change in broadleaved Korean pine forests in Changbai Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(3): 24-31.
    [9]XU Jin-mei, BAO Fu-cheng, Lv Jian-xiong, HUANG Rong-feng, ZHAO You-ke, Evans Robert. Climate response of radial growth of Picea crassifolia in Qilian Mountains of northwestern China.[J]. Journal of Beijing Forestry University, 2012, 34(2): 1-6.
    [10]ZHANG Bao-lei, ZHOU Wan-cun, ZHOU Qi-gang, FENG Chao-yang. Forestland changes and climate response in the Three Gorges Reservoir Area based on RS and GIS[J]. Journal of Beijing Forestry University, 2006, 28(4): 62-66.
  • Cited by

    Periodical cited type(8)

    1. 林立,何月秋,王豪,陆云峰,王建军,黄华宏. 代谢组与转录组联合解析赤皮青冈叶片黄化变异机制. 广西植物. 2024(07): 1319-1336 .
    2. 李可悦,王丹丹,刘江涛,申琼,盖少杰,武峻新. 西葫芦嫩瓜皮叶绿素合成代谢与其皮色形成的关联性研究. 植物遗传资源学报. 2024(08): 1336-1346 .
    3. 靳程,曹孟岩,杨衡荣,项瑶,杨建峰,时波,黄颂谊,辛国荣. 施肥和修剪对‘兰引Ⅲ号’草坪冬季质量及土壤特性的影响. 草地学报. 2024(09): 3006-3016 .
    4. 邓皓予,吴一超,符腾,杨在君,乌日娜. 甘氨酸喷施下Cd对川麦28生理生化过程的影响. 华北农学报. 2024(S1): 63-71 .
    5. 刘冬杰,肖波,曹秀珑. 微生物菌剂对草坪草抗寒性的研究进展. 草学. 2023(01): 11-14 .
    6. 何海鹏,南丽丽,马彪,夏静,姚宇恒,陈洁,汪堃. 红豆草种质苗期耐寒性筛选及评价. 中国草地学报. 2023(05): 41-49 .
    7. 廖浩钦,谢文刚. 牧草应对低温胁迫机制研究进展. 中国草地学报. 2023(12): 99-111 .
    8. 王明莹. 不同品种苜蓿对低温胁迫的生理响应及抗寒性评价. 呼伦贝尔学院学报. 2022(03): 84-88+128 .

    Other cited types(9)

Catalog

    Article views (100) PDF downloads (37) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return