• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHAO Yu-hong, ZHAI Ya-nan, WANG Zhen-yu. Composition analysis and structural identification of polyphenols from Pinus sylvestris var. mongolica barks[J]. Journal of Beijing Forestry University, 2016, 38(1): 125-130. DOI: 10.13332/j.1000--1522.20140285
Citation: ZHAO Yu-hong, ZHAI Ya-nan, WANG Zhen-yu. Composition analysis and structural identification of polyphenols from Pinus sylvestris var. mongolica barks[J]. Journal of Beijing Forestry University, 2016, 38(1): 125-130. DOI: 10.13332/j.1000--1522.20140285

Composition analysis and structural identification of polyphenols from Pinus sylvestris var. mongolica barks

More Information
  • Received Date: November 14, 2014
  • Revised Date: January 04, 2015
  • Published Date: January 30, 2016
  • The composition of polyphenols from Pinus sylvestris L. var. mongolica were analyzed and their structures were identified with UV-VIS, IR, HPLC and LC-MS. The UV-VIS results showed that there are absorption peaks in regions of 240-- 280 nm and 300-- 400 nm, indicating that flavonoids exist in the pine polyphenols. Fourier Transform Infrared Spectrum analysis showed that a strong and broad absorption peak at 3 400 cm-1 is generated from stretching and vibration of phenolic hydroxyl Ar-OH and absorption peaks at 1 390-- 1 315 cm-1 due to characteristics of in-plane bending vibration of hydroxyl δO—H, which indicated that hydroxyl groups existed in the pine polyphenols. Combined application of HPLC and LC-MS showed that there are seven components in P. sylvestris L. var. mongolica polyphenols, i.e., catechuic acid, rutin, chlorogenic acid, gallic acid, sinapic acid-dextrose glucoside, peony-3- glucoside or centaurea-3-(6-o-acetyl)-glucose glycoside, and sinapic acid peonidin-3-sophoroside composition.
  • [1]
    LIAZID A, SCHWARZ M, VARELA R M, et al. Evaluation of various extraction techniques for obtaining bioactive extracts from pine seeds[J]. Food and Bioproducts Processing, 2010, 88(2): 247- 252.
    [1]
    ZHAO H T, WANG Z Y, CHENG C L, et al.Advances in antioxidant activity mechanism research and structure-activity relationship of pine polyphenols[J]. Science and Technology of Food Industry, 2012, 33(2): 458- 461.
    [2]
    PINELO M, RUBILAR M, SINEIRO J, et al. Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster)[J]. Food Chemistry, 2004, 85(2): 267- 273.
    [2]
    GU J, ZHANG Y.Effective components of the pine bark[J]. Heilongjiang Medical Science, 2009, 32(3): 4- 9.
    [3]
    ZHAO Y H, ZHAI Y N, WANG Z Y. Extraction of polyphenlols from Pinus sylvestris var mongolica and comparison of extraction method[J]. Science and Technology of Food Industry, 2013, 34(4): 304- 309.
    [3]
    赵海田,王振宇,程翠林,等. 松多酚类活性物质抗氧化构效关系与作用机制研究进展[J]. 食品工业科技, 2012, 33(2): 458- 461.
    [4]
    BRAGA M E M, SANROS R, SEABRA I J, et al. Fractioned SFE of antioxidants from maritime pine bark[J]. The Journal of Supercritical Fluids, 2008, 47(1): 37- 48.
    [4]
    ZHAO Y H, ZHAI Y N, DANG Y, et al. Optimization of purification conditions of polyphenols from Pinus sylvestris var. mongolica using response surface methodology[J].Journal of Beijing Forestry University, 2014, 36(1): 138- 142.
    [5]
    ANN S T, JAN O, ANETA W. Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap[J]. Food Chemistry, 2007,103:853- 859.
    [5]
    LIU R, HE J,WANG Z Y. Purification of polyphenols from Pinus sylvestris L.var. mongolica barks by macroporous resin[J]. Science and Technology of Food Industry, 2013, 34(11): 201- 209.
    [6]
    SEKIDO Y. Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells[J]. Cancer Science, 2010, 101(1): 1- 6.
    [7]
    NIGAM N, BHUI K, PRASAD S, et al. [6]-gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells[J]. Chemico-biological Interactions, 2009, 181(1): 77- 84.
    [8]
    BONELLO P, BLODGETT J T. Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines[J]. Physiological and Molecular Plant Pathology, 2003, 63(5): 249- 261.
    [9]
    FREITAS A M, ALMEIDA M T R. ALMEIDA C R. Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract[J]. Journal of Ethno Pharmacology, 2009, 126(3): 512- 517.
    [10]
    TURTOLA S, SALLAS L, HOLOPAINEN J K, et al. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings[J]. Environmental Pollution, 2006, 144(1): 166- 171.
    [11]
    顾剑, 张宇. 樟子松树皮有效成分的初步研究[J]. 黑龙江医药科学, 2009, 32(3): 4- 9.
    [12]
    赵玉红, 翟亚楠, 王振宇. 樟子松树皮中松多酚的提取工艺研究及提取方法比较[J]. 食品工业科技, 2013, 34(4): 304- 309.
    [13]
    赵玉红, 翟亚楠, 党媛,等. 响应面法优化樟子松树皮松多酚纯化工艺研究[J]. 北京林业大学学报, 2014, 36(1): 138- 142.
    [14]
    刘荣, 何娇, 王振宇. 大孔树脂对樟子松树皮多酚的纯化工艺研究[J]. 食品工业科技, 2013, 34(11): 201- 209.
  • Cited by

    Periodical cited type(9)

    1. 范越,王鹏,王静怡,郭庆启. 基于大数据统计分析松多酚的研究现状和热点展望. 食品工业科技. 2023(24): 34-42 .
    2. 刘梦楠,李晓庆,周军,姚桢,彭茜,李斌,刘卫. 酚醛树脂基铝电解用炭素材料的静态浸润过程. 有色金属(冶炼部分). 2022(04): 49-56 .
    3. 马妮,刘慧燕,方海田,胡海明,辛世华,杨小萍,刘洪涛. 红枣多酚提取工艺优化、成分及抗氧化活性分析. 食品工业科技. 2022(16): 246-254 .
    4. 任维维,吴烨婷,梁宗瑶,李珉梦,魏园园,段旭昌. 青柿子提取物的抗氧化、抑菌、抑癌活性研究. 中国食品学报. 2021(11): 29-38 .
    5. 贡小辉,朱益灵,魏渊,孔令东,韩邦兴,欧阳臻. 石斛甲醇提取物HPLC-MS分析及4种多酚测定. 中成药. 2020(05): 1223-1228 .
    6. 蔡铭,陈思,骆少磊,杨开,孙培龙. 膜分离与醇沉技术纯化猴头菇粗多糖的比较. 食品科学. 2019(09): 83-90 .
    7. 绰尔鹏,赵玉红. 热风干燥温度对老山芹品质的影响. 现代食品科技. 2019(07): 127-136 .
    8. 王晓梅,张忠山,吴酬飞,张立钦. 马尾松松针多酚的提取及其抗氧化活性. 湖州师范学院学报. 2018(04): 30-34 .
    9. 王菲儿,杨跃军,徐剑,巫岳,蔡剑峰,傅青,郑向炜,刘源才,金郁. 板栗壳棕色素的抗氧化活性及其活性成分的分离、鉴定. 食品工业科技. 2018(24): 86-91+96 .

    Other cited types(20)

Catalog

    Article views (2192) PDF downloads (37) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return