• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Qing, ZHANG Yuan, CHEN Jian, RANJITKAR Sailesh, SHEN Li-xin. Major factors affecting the distribution of Viscum articulatum Burm in an ancient cultivated tea plantation.[J]. Journal of Beijing Forestry University, 2015, 37(10): 117-124. DOI: 10.13332/j.1000-1522.20140033
Citation: WANG Qing, ZHANG Yuan, CHEN Jian, RANJITKAR Sailesh, SHEN Li-xin. Major factors affecting the distribution of Viscum articulatum Burm in an ancient cultivated tea plantation.[J]. Journal of Beijing Forestry University, 2015, 37(10): 117-124. DOI: 10.13332/j.1000-1522.20140033

Major factors affecting the distribution of Viscum articulatum Burm in an ancient cultivated tea plantation.

More Information
  • Received Date: February 26, 2014
  • Published Date: October 30, 2015
  • The aims of this study were to explore the distribution of Viscun articulatum in tea comunity and carry out a regression analysis of the factors affecting the distribution of V. articulatum based on the data of individual tea trees at the quadrat level. The results showed that 1) the mean rate of V. articulatum parasitism on tea trees was about 40%, and the frequency distribution of height for V. articulatum followed the ecological distribution while the number of branches was in the left skewed normal distribution, with most of them preferring to grow at 1/3--3/4 of the tree height. The distribution of V. articulatum depended more on tea tree characteristics than on environmental factors. 2) At single tea tree level, tea tree characteristics may have effect on the distribution of V. articulatum in the order of canopy ground diameter tree height height under branch mosses/lichen coverage. The tea trees with a high mosses/lichen coverage, large canopy, ground diameter ≥11 cm, height ≥3.1 m and HUD of 23--55 cm were found to be the most likely hosts of V. articulatum. 3) At the quadrat level, environmental factors affecting the distribution of V. articulatum were ranked as elevation slope aspect canopy density slope degree. V. articulatum is mainly distributed in the study area at elevations higher than 1 420 m, scarcely at mountain top or valleys. It was found to be more abundant in northwest and southeast slopes as well as in the areas with high canopy density. The greater the slope degree is, the better it grows. 4) Light and water were the dominant environmental factors affecting the distribution of V. articulatum, and the host community factors led to the reallocation of light and moisture, thus affecting the distribution position of V. articulatum in tea trees.
  • [1]
    NICKRENT D. The parasitic plant connection [R]. Carbondale: Southern Illinois University Carbondale, 2007.
    [1]
    HUANG X Y,GUAN K Y, LI A R. Biological traits and their ecological significances of parasitic plants: a review[J]. Chinese Journal of Ecology, 2011, 30(8): 1838-1844.
    [2]
    CAMERON D D, GENIEZ J M, SEEL W E, et al. Suppression of host photosynthesis by the parasitic plant Rhinanthus minor [J]. Annals of Botany, 2008, 101(4): 573-578.
    [2]
    SU C, XUE Q L, HU Y J. Study on in vitro antibacterial effect of Viscum articulatum extracts on Yunnan ancient tea trees [J]. Journal of Anhui Agricultural Sciences, 2012, 40(13): 7919-7920.
    [3]
    CAMERON D D, HWANGBO J K, KEITH A M. Interactions between the hemiparasitic angiosperm Rhinanthus minor and its hosts: from the cell to the ecosystem [J]. Folia Geobotanica, 2005, 40(2-3): 217-229.
    [3]
    ZHONG W W, PENG W S, YU Z Y, et al. In vitro antioxidant activity of polysaccharides from Viscum articulatum [J]. Food Sciences, 2011, 32 (11 ): 25-28.
    [4]
    PRIDER J, WATLING J, FACELLI J M. Impacts of a native parasitic plant on an introduced and a native host species: implications for the control of an invasive weed [J]. Annals of Botany, 2009, 103(1): 107-115.
    [4]
    HAN R L, ZHANG D X, HAO G. Geographical distribution of Chinese species of Viscum (Viscaceae) and its hosts [J]. Journal of Tropical and Subtropical Botany, 2002, 10(3): 222-228.
    [5]
    黄新亚, 管开云, 李爱荣. 寄生植物的生物学特性及生态学效应 [J]. 生态学杂志, 2011, 30(8): 1838-1844.
    [5]
    WANG X L, LI L Q, LI M R. The chemical research of Viscum articulatum [J] .West China J Pharm Sci, 1992, 7(2):252-257.
    [6]
    BARDGETT R D, SMITH R S, SHIEL R S, et al. Parasitic plants indirectly regulate below-ground properties in grassland ecosystems [J]. Nature, 2006, 439(7079): 969-972.
    [6]
    CHEN H W. The diversity and sustainable utilization of Xishuangbanna ancient tea tree resource [J]. Journal of Anhui Agricultural Sciences, 2011,39(14): 8529-8530.
    [7]
    WATSON D M. Mistletoe: a keystone resource in forests and woodlands worldwide [J]. Annual Review of Ecology and Systematics, 2001,32: 219-249.
    [7]
    QI D H, GUO H J, CUI J Y. Plant biodiversity assessment of the ancient tea garden ecosystem in Jingmai of Lancang, Yunnan [J]. Biodiversity Science, 2005,13(3): 221-31.
    [8]
    PRESS M C, PHOENIX G K. Impacts of parasitic plants on natural communities [J]. New Phytologist, 2005, 166(3): 737-751.
    [8]
    XIAO Z D, CHENG P, MA Y C. Comparison of photosynthesis chemical compositions for characteristics, bud characters and tea in different planting models [J]. Joural of Nanjing Forestry University: Nature Sciences Edition, 2011,35(2): 15-19.
    [9]
    MATHIASEN R L, NICKRENT D L, SHAW D C, et al. Mistletoes: pathology, systematics, ecology, and management [J]. Plant Disease, 2008, 92: 988-1006.
    [10]
    苏驰, 薛桥丽, 胡永金. 云南古树茶上寄生的 “螃蟹脚” 提取物的体外抑菌效应研究 [J]. 安徽农业科学, 2012, 40(13): 7919-7920.
    [11]
    钟文武, 彭文书, 余正云. 扁枝槲寄生多糖体外抗氧化活性 [J]. 食品科学, 2011, 32(11): 25-28.
    [12]
    韩荣兰, 张奠湘, 郝刚. 中国槲寄生属植物及其寄主的地理分布 [J]. 热带亚热带植物学报, 2002, 10(3): 222-228.
    [13]
    PRADHAN B K, BADOLA H K. Ethnomedicinal plant use by Lepcha tribe of Dzongu Valley, bordering Khangchendzonga Biosphere Reserve in North Sikkim, India[J/OL]. Journal of Ethnobiology and Ethnomedicine, 2008, (2014-01-10)[2013-11-21]. http:∥www.ethnobiomed.com/content/4/1/22, DOI: 10.1186/1746-4269-4-22.
    [14]
    王晓琳,李良琼,李美荣. 扁枝槲寄生化学成分研究 [J]. 华西药学杂志, 1992, 7(2):252-257.
    [15]
    BINDU V. Evaluation of antioxidant activity of Viscum articulatum (Burm. f) [D]. Arunachal Pradesh: Rajiv Gandh University, 2011.
    [16]
    ARRUDA R, FADINI R F, MOUR O F A. Natural history and ecology of neotropical mistletoes [J]. Tropical Biology and Conservation Management, 2009, 1:133-154.
    [17]
    ARRUDA R, FADINI R F, CARVALHO L N. Ecology of neotropical mistletoes: an important canopy-dwelling component of Brazilian ecosystems [J]. Acta Botanica Brasilica, 2012, 26 (2): 264-274.
    [18]
    陈红伟. 西双版纳古茶树资源的多样性与可持续利用 [J]. 安徽农业科学, 2011, 39(14): 8529-8530.
    [19]
    齐丹卉, 郭辉军, 崔景云. 云南澜沧县景迈古茶园生态系统植物多样性评价 [J]. 生物多样性, 2005, 13(3): 221-231.
    [20]
    FRIEDMAN J H. Greedy function approximation: a gradient boosting machine [J]. Annals of Statistics, 2001, 29(5):1189-1232.
    [21]
    FRIEDMAN J H. Stochastic gradient boosting [J]. Computational Statistics Data Analysis, 2002, 38(4): 367-378.
    [22]
    OHSE B, HUETTMANN F, ICKERT-BOND S M, et al. Modeling the distribution of white spruce (Picea glauca) for Alaska with high accuracy: an open access role-model for predicting tree species in last remaining wilderness areas [J]. Polar Biology, 2009, 32(12): 1717-1729.
    [23]
    EHLERINGER J R, SCHULZE E D. Mineral concentrations in an autoparasitic Phoradendron californicum growing on a parasitic P. californicum and its host, Cercidium floridum [J]. American Journal of Botany, 1985,72(4): 568-571.
    [24]
    KELLY C K, VENABLE D L, ZIMMERER K. Host specialization in Cuscuta costaricensis: an assessment of host use relative to host availability [J]. Oikos, 1988, 53(3):315-320.
    [25]
    CAMERON D D. A role for differential host resistance to the hemiparasitic angiosperm, Rhinanthus minor L. in determining the structure of host plant communities [D]. Aberdeen: University of Aberdeen, 2004.
    [26]
    肖正东, 程鹏, 马永春. 不同种植模式下茶树光合特性, 茶芽性状及茶叶化学成分的比较 [J]. 南京林业大学学报: 自然科学版, 2011, 35(2): 15-19.
  • Cited by

    Periodical cited type(18)

    1. 黄鑫,徐国祺,马耀辉. 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂. 北京林业大学学报. 2025(01): 116-125 . 本站查看
    2. 张景朋,邵闯,蒋明亮. 高效液相色谱法测定防腐材中嘧菌酯含量的方法研究. 木材科学与技术. 2025(01): 64-70 .
    3. 吴喆虹,王文志,罗玲卓,袁超峰,苏勇,朱万泽. 贡嘎山健康与腐朽峨眉冷杉径向生长分异及其气候响应. 生态学报. 2024(23): 10897-10905 .
    4. 储炜,徐明,许琪,李婷,崔兆彦. 加速腐朽环境下重组竹力学及耐腐性能研究. 建筑科学与工程学报. 2023(03): 30-39 .
    5. 宋丽琴,宋太泽,祝席文,程芳超,孙建平. 木材花斑真菌对木材的影响及应用研究进展. 应用与环境生物学报. 2022(03): 805-812 .
    6. 谢启芳,张保壮,张利朋,苗壮. 自然干裂木柱受力性能试验与退化模型研究. 建筑结构学报. 2022(12): 210-222 .
    7. 常旭东,金光泽. 地形和土壤因子对红松活立木腐朽的影响. 林业科学. 2022(11): 71-82 .
    8. 张景朋,蒋明亮,马星霞,张斌. 甲氧基丙烯酸酯类制剂的木材防腐性能研究. 北京林业大学学报. 2021(03): 131-137 . 本站查看
    9. 王玉娇,彭尧,曹金珍. 褐腐初期南方松木材微观形貌与化学成分分析. 北京林业大学学报. 2021(03): 138-144 . 本站查看
    10. 王湘茹,曾飞扬,吕嘉宇,乔宇欣,闫丽. 硅烷偶联剂对水杨酸/二氧化硅微胶囊改性杨木耐腐性的影响. 林产工业. 2021(05): 54-59 .
    11. 贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性. 林业科学. 2021(05): 165-175 .
    12. 赵艳,张泽宇,金宇乔,庞久寅,孙耀星. 木材表面仿制类玫瑰花超疏水结构研究. 林产工业. 2020(12): 32-34+39 .
    13. 赵博识,于志明,漆楚生,唐睿琳,张扬. 木材微生物变色与调控研究现状和展望. 林产工业. 2019(08): 1-4 .
    14. 郭宇,李超,李英洁,王哲,姚利宏. 木材细胞壁与木材力学性能及水分特性之间关系研究进展. 林产工业. 2019(08): 14-18 .
    15. 徐华东,狄亚楠,邢涛,徐群. 褐腐对白杨木材固碳量的影响规律及机理. 中南林业科技大学学报. 2019(11): 104-109 .
    16. 孙恒,冀晓东,赵红华,杨茂林,丛旭. 人工林刺槐木材物理力学性质研究. 北京林业大学学报. 2018(07): 104-112 . 本站查看
    17. 孙海燕,苏明垒,王玉荣. 木材细胞壁力学性能与细胞壁组分和构造的相关性研究. 林产工业. 2018(10): 22-27 .
    18. 陈继超,姜维娜,曹文静,周徐亮,周晓燕,徐莉. 杨木纤维/Si-B复合材料制备及其防腐性能研究. 南京林业大学学报(自然科学版). 2018(05): 206-210 .

    Other cited types(18)

Catalog

    Article views (1831) PDF downloads (35) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return