• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
DANG Xiao-hong, GAO Yong, YU Yi, LI Qian, WANG Shan, WU Hao, WANG Hong-xia, ZHAO Peng-yu. Windproof efficiency with new biodegradable PLA sand barrier and traditional straw sand barrier[J]. Journal of Beijing Forestry University, 2015, 37(3): 118-125. DOI: 10.13332/j.1000-1522.20140245
Citation: DANG Xiao-hong, GAO Yong, YU Yi, LI Qian, WANG Shan, WU Hao, WANG Hong-xia, ZHAO Peng-yu. Windproof efficiency with new biodegradable PLA sand barrier and traditional straw sand barrier[J]. Journal of Beijing Forestry University, 2015, 37(3): 118-125. DOI: 10.13332/j.1000-1522.20140245

Windproof efficiency with new biodegradable PLA sand barrier and traditional straw sand barrier

More Information
  • Received Date: July 10, 2014
  • Revised Date: October 07, 2014
  • Published Date: March 30, 2015
  • To understand the windproof benefit of new biodegradable PLA sand barrier, we studied respectively the windproof efficiency, roughness of ground surface and wind speed profile characteristics of 1 m×1 m, 2 m×2 m, 3 m×3 m PLA sand barriers by measuring the wind speeds in different heights in PLA sand barrier sample plots. At the same time we took the traditional half hidden straw sand barrier sample plots and shifting dunes as contrast, and studied the difference of windproof efficiency between PLA and straw sand barrier. The results showed that wind speed efficiency could be reduced by PLA sand barrier more significantly than straw sand barrier with the biggest difference 10.3%, the windproof efficiency with 1 m×1 m was better than other two for both PLA and straw sand barriers. Increasing the surface roughness ranked in PLA sand barrier straw sand barrier shifting dune. With the increasing of sand barrier size, the surface roughness showed the decreasing trend. Under the same terrain condition, the average surface roughness in PLA sand barrier sample plots was 1.4 times of that in straw sand barrier. The differences of surface roughness in PLA sand barrier and straw sand barrier on the bottom of upwind slope, mesoslope, slope top and leeward slope were not obvious with its average surface roughness 0.7 cm. The wind speed profile for both 1 m×1 m PLA sand barrier and straw sand barrier appeared as “S” type, while sand barriers of other sizes were as similar as shifting dunes with wind speed profile of exponential distribution. Comparing three sizes sand barriers by both two different materials, the effect of decreasing wind speed became less with the size increase, and the “S” characteristic of wind speed profile was less and less obvious until close to exponential distribution.
  • [1]
    LÜ J,ZHANG Q. Performance and application of PLA composite fiber[J].Technical Textiles,2004(9):1-5.
    [1]
    吕晶,张泉.聚乳酸复合纤维的性能及应用[J].产业用纺织品, 2004(9): 1-5.
    [2]
    SUN J. Research on performance degradation property of PLA fabrics[D].Shanghai:Donghua University,2014.
    [2]
    孙嘉. 含聚乳酸纤维针织物服用性能与降解性能研究[D].上海:东华大学,2014.
    [3]
    ZHOU D D. A study on the application of biodegradable polylactic acid (PLA) material for combating desertification[D].Huhhot:Inner Mongolia Agricultural University,2009.
    [3]
    周丹丹. 生物可降解聚乳酸(PLA)材料在防沙治沙中的应用研究[D].呼和浩特:内蒙古农业大学,2009
    [4]
    CHANG G, ZHANG Y, DENG B Y, et al. Study on physical ageing properties of PLA fiber[J].New Chemical Materials,2013(2):129-131.
    [4]
    常过,张越,邓炳耀,等. 聚乳酸纤维的物理老化性能研究[J]. 化工新型材料,2013(2):129-131.
    [5]
    YUAN L M,GAO Y,YU Y, et al. Effects of poly lactic acid sand barrier on soil hardness [J]. Science of Soil and Water Conservation, 2010, 8(3):172-177.
    [5]
    袁立敏,高永,虞毅,等. PLA沙障对土壤硬度的影响[J].中国水土保持科学,2010,8(3):172-177.
    [6]
    李谦. PLA沙障防风固沙效益的变化过程[D].呼和浩特:内蒙古农业大学,2012
    [6]
    LI Q. The change process of wind-break and sand-fixing benefits on PLA sand barrier [D].Hohhot: Inner Mongolia Agricultural University, 2012.
    [7]
    YUAN L M. Study on effects of soil physical properties and protection benefits by PLA sand barrier[D]. Hohhot: Inner Mongolia Agricultural University, 2010.
    [7]
    袁立敏. PLA沙障对土壤物理性质影响及其防护效益研究[D].呼和浩特:内蒙古农业大学,2010.
    [8]
    原伟杰,虞毅,王戈,等. 可降解聚乳酸沙障降解性能研究[J]. 水土保持通报, 2012, 32(3): 107-110.
    [8]
    YUAN W J,YU Y,WANG G, et al. Degradation characteristics of degradable polylatic acid sand barrier [J]. Bulletin of Soil and Water Conservation, 2012, 32(3): 107-110.
    [9]
    QI Y X,ZHAO T N.The summation of combating and controlling desertification in China[J]. Journal of Beijing Forestry University: Social Sciences, 2006, 5(Suppl.1):51-58.
    [9]
    祁有祥,赵廷宁.我国防沙治沙综述[J]. 北京林业大学学报:社会科学版,2006, 5(增刊1):51-58.
    [10]
    李朝生,杨晓晖,张克斌,等. 沙漠-绿洲系统中降雨、土壤水分与地下水位的响应特征[J]. 北京林业大学学报,2007,29(4):129-135.
    [10]
    LI C S,YANG X H, ZHANG K B, et al.Response characteristics of precipitation, soil moisture and groundwater level in desert-oasis system [J]. Journal of Beijing Forestry University,2007, 29(4):129-135.
    [11]
    孙显科,郭志中. 沙障固沙原理的研究[J]. 甘肃林业科技,1999(2):8-13.
    [11]
    SUN X K, GUO Z Z. Study on principals of fixing sand with sand control hedge [J]. Journal of Gansu Forestry Science and Technology, 1999(2):8-13.
    [12]
    赵廷宁,曹子龙,郑翠玲,等. 平行高立式沙障对严重沙化草地植被及土壤种子库的影响[J].北京林业大学学报,2005,27(2):34-37.
    [12]
    ZHAO T N,CAO Z L, ZHENG C L, et al. Impacts of high-parallel sand-barrier on vegetation and soil seed bank in the seriously desertified grassland[J]. Journal of Beijing Forestry University, 2005,27(2):34-37.
  • Related Articles

    [1]Deng Xiangpeng, Xu Fangze, Zhao Shanchao, Xiang Wei. Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method[J]. Journal of Beijing Forestry University, 2023, 45(1): 11-20. DOI: 10.12171/j.1000-1522.20220318
    [2]Liang Ruiting, Sun Yujun, Zhou Lai. Modeling variable exponential taper function for Cunninghamia lanceolata based on quantile regression[J]. Journal of Beijing Forestry University, 2021, 43(7): 70-78. DOI: 10.12171/j.1000-1522.20200253
    [3]Ge Huishuo, Song Yuepeng, Su Xuehui, Zhang Deqiang, Zhang Xiaoyu. Optimal growth model of Populus simonii seedling combination based on Logistic and Gompertz models[J]. Journal of Beijing Forestry University, 2020, 42(5): 59-70. DOI: 10.12171/j.1000-1522.20190296
    [4]Yao Dandan, Xu Qigang, Yan Xiaowang, Li Yutang. Individual-tree mortality model of Mongolian oak forests based on Bayesian method[J]. Journal of Beijing Forestry University, 2019, 41(9): 1-8. DOI: 10.13332/j.1000-1522.20180260
    [5]Gong Da-peng, Kang Feng-feng, Liu Xiao-dong. Spatial and temporal distribution patterns of grassland fire and its response to meteorological factors in XinBarag Prairie of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 82-89. DOI: 10.13332/j.1000-1522.20170402
    [6]YAO Dan-dan, LEI Xiang-dong, ZHANG Ze-lu. Bayesian parameter estimation of dominant height growth model for Changbai larch (Larix olgensis Henry) plantations[J]. Journal of Beijing Forestry University, 2015, 37(3): 94-100. DOI: 10.13332/j.1000-1522.20140221
    [7]YAN Wei, ZONG Shi-xiang, LUO You-qing, CAO Chuan-jian, , LI Zhan-wen, GUO Qi-lin. Application of stepwise regression model in predicting the movement of Artemisia ordosica boring insects.[J]. Journal of Beijing Forestry University, 2009, 31(3): 140-144.
    [8]MA You-ping, , FENG Zhong-ke, DONG Bin, AI Xun-ru. Genetic algorithm solution for Logistic model parameters.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 192-195.
    [9]XIANG Wei, LEI Xiang-dong, LIU Gang, XU Guang, CHEN Guang-fa. Individual tree mortality models for seminatural larchsprucefir forests in Jilin Province, northeastern China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 90-98.
    [10]TIAN Yong-chen, LIU Shao-gang, ZHAO Gang, CHEN Jie-yuan, LI Wen-bin. Intelligent decision-making model for forest fire suppression[J]. Journal of Beijing Forestry University, 2007, 29(4): 46-48. DOI: 10.13332/j.1000-1522.2007.04.011
  • Cited by

    Periodical cited type(12)

    1. 杨春梅,李昱成,田心池,吴方镜,魏明,吴哲. 基于筛分配比的超薄纤维板物理力学性能研究. 林业机械与木工设备. 2024(01): 20-24 .
    2. 张镭,邹淼,唐启恒,郭文静. 热压时间和温度对酚醛树脂型超薄高密度纤维板性能的影响. 木材科学与技术. 2023(01): 68-73 .
    3. 高黎,常亮,郭文静,范丽颖,涂松,袁旻. 轻质纤维板发展与应用探讨. 中国人造板. 2023(06): 8-11 .
    4. 史振丁,贾耀芳,郭勇德. 基于不同水刺水针板缠结性能的研究. 化纤与纺织技术. 2023(05): 20-22 .
    5. 陈秀兰,杜官本,范恩庆,杨龙. 工艺参数对脲基超支化聚合物改性效果的影响. 林产工业. 2022(04): 20-24 .
    6. 龙慈明,覃掌吉,黎耀健,卿彦,李新功,吴义强,刘明. 脲醛树脂/异氰酸酯胶粘剂组合施胶对纤维板性能的影响. 中国胶粘剂. 2021(02): 8-13 .
    7. 黄伟雄,韦盛永,陆锋,冯炳健,李立群,徐健峰. 中密度纤维板的密度稳定性分析——以广西三威林产岑溪市人造板有限公司为例. 林业科技通讯. 2021(04): 63-66 .
    8. 孙萍,张健,刘红光,李黎,罗斌. UF/PMDI与PMDI胶黏剂制备轻质刨花板性能对比研究. 林产工业. 2021(06): 7-12 .
    9. 伍艳梅,卢胜高,赵丽媛,唐召群,杨娜. 中密度纤维板剖面密度特征参数与主要物理力学性能相关性. 木材科学与技术. 2021(05): 31-37 .
    10. 张成旭,花军,陈光伟. 纤维目数对纤维板力学性能和成本的影响研究. 林产工业. 2020(03): 19-24 .
    11. 马玉峰,龚轩昂,王春鹏. 木材胶黏剂研究进展. 林产化学与工业. 2020(02): 1-15 .
    12. 林国利,覃掌吉,魏云和,安超,杨守禄,刘明. 工艺因子对MDI制备无醛纤维板性能的影响. 林产工业. 2020(08): 25-28 .

    Other cited types(5)

Catalog

    Article views (2747) PDF downloads (40) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return