• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Jin-song, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 88-94. DOI: 10.13332/j.1000-1522.20140294
Citation: WANG Jin-song, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 88-94. DOI: 10.13332/j.1000-1522.20140294

Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.

More Information
  • Received Date: August 28, 2014
  • Published Date: October 28, 2016
  • Through a long-term in situ simulated nitrogen (N) deposition experiment, we explored the response and mechanism of soil organic carbon (SOC) and total N content (TN) to exogenous N addition in warm-temperate Chinese pine (Pinus tabuliformis) forests. The levels of simulated N deposition were set as control (0 kg/(ha·a), N0), low N (50 kg/(ha·a), N1), medium N (100 kg/(ha·a), N2), and high N (150 kg/(ha·a), N3). Soil core method was used to investigate the responses of SOC and TN at different soil depths to simulated N deposition in the plantation and natural forests of P. tabuliformis. The results showed that SOC was reduced at different soil depths due to N deposition in both plantation and natural forests and the reduction of SOC was increased with N levels. Moreover, the SOC at surface layer (0-20 cm) declined more than that at deep layers (20-40 cm, 40-60 cm). Additionally, the SOC at surface layer in the natural forest declined more than that in the plantation. N deposition significantly increased soil TN at surface layer in the plantation (P0.05), however, the TN at surface layer in the natural forest was not significantly affected by simulated N deposition.
  • [1]
    金峰, 杨浩, 赵其国. 土壤有机碳储量及影响因素研究进展[J]. 土壤, 2000, 1: 11-17.
    [1]
    JIN F, YANG H, ZHAO Q G. Progress on soil organic carbon storage and its affecting factors[J]. Soils, 2000, 1: 11-17.
    [2]
    DIXON R K, TUMER D P. The global carbon cycle and climate change: responses and feedbacks from belowground systems[J]. Environmental Pollution, 1991, 73(3-4): 245-262.
    [2]
    WANG J S. Effects of simulated nitrogen deposition on soil carbon cycling processes of Pinus tabulaeformis forests in warm temperate of China[D]. Beijing: Beijing Forestry University, 2013.
    [3]
    GOODALE C L, HEATH L S, HOUGHTON R A, et al. Forest carbon sinks in the Northern Hemisphere[J]. Ecological Applications, 2002, 12(3): 891-899.
    [3]
    TU L H, HU T X, ZHANG J, et al. Response of soil organic carbon and nutrients to simulated nitrogen deposition in Pleioblastus amarus plantation, Rainy Area of West China[J]. Chinese Journal of Plant Ecology, 2011, 35(2): 125-136.
    [4]
    CHRISTOPHER S. Terrestrial biomass and effect of deforestation on the global carbon cycle[J]. Bioscience, 1999, 49(10): 769-778.
    [4]
    SHI G S. A study on the soil respiration rate of mixed coniferous broad leaved forest in the growing season in Taiyue Mountain, Shanxi Province, China[D]. Beijing: Beijing Forestry University, 2009.
    [5]
    LI H S, WANG J S, ZHAO X H, et al. Effects of litter removal on soil respiration under simulated nitrogen deposition in a Pinus tabulaeformis forest in Taiyue Mountain, China[J]. Chinese Journal of Ecology, 2014, 33(4): 857-866.
    [5]
    汪金松. 模拟氮沉降对暖温带油松林土壤碳循环过程的影响[D]. 北京: 北京林业大学, 2013.
    [6]
    LI H S, WANG J S, LIU X, et al. Effect of simulation N deposition on herbaceous vegetation community in the plantation and natural forests of Pinus tabulaeformis in the Taiyue Mountain[J]. Acta Ecologica Sinica, 2015, 35(11): 1-15.
    [6]
    GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226.
    [7]
    MASKELL L C, SMART S M, BULLOCK J M, et al. Nitrogen deposition causes widespread loss of species richness in British habitats[J]. Global Change Biology, 2010, 16(2): 671-679.
    [7]
    LI H S, WANG J S, LIU X, et al. Effects and its sustained effect of simulated nitrogen deposition on soil respiration in Pinus tabulaeformis forests in the Taiyue Mountain, China [J]. Acta Scientiae Circumstantiae, 2014, 34(1): 238-249.
    [8]
    MAGNANI F, MENCUCCINI M, BORGHETTI M, et al. The human footprint in the carbon cycle of temperate and boreal forests[J]. Nature, 2007, 447: 849-851.
    [8]
    Soil Science Society of China. Soil agricultural chemical analysis method [M]. Beijing: China Agriculture Science and Technique Press, 1999.
    [9]
    SHEN F F. Impacts of simulated nitrogen deposition on soil organic carbon pool in Chinese fir plantation [D]. Nanchang: Jiangxi Agricultural University, 2011.
    [9]
    HYVNEN R, PERSSON T, ANDERSSON S, et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe[J]. Biogeochemistry, 2008, 89(1): 121-137.
    [10]
    GUO Y Q, FAN X H, WANG J S, et al. Responses of soil microbial biomass to simulated nitrogen deposition in Pinus tabulaeformis forests in the Taiyue Mountain of China [J]. Chinese Journal of Applied Environmental Biology, 2013, 19(4): 605-610.
    [10]
    MAGILL A H, ABER J D, CURRIE W S, et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA[J]. Forest Ecology and Management, 2004, 196(1):7-28.
    [11]
    TOWNSEND A R, BRASWELL B H, HOLLAND E A, et al. Spatial and temporal patterns in terrestrial carbons storage due to deposition of fossil fuel nitrogen[J]. Ecological Applications, 1996, 6 (3): 806-814.
    [11]
    FAN H B, YUAN Y H, WANG Q, et al. Effects of nitrogen deposition on soil organic carbon and total nitrogen beneath Chinese fir plantations [J]. Journal of Fujian College of Forestry, 2007, 27(1): 1-6.
    [12]
    NADELHOFFER K J, EMMETT B A, GUNDERSEN P, et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature, 1999, 398: 145-148.
    [12]
    SHEN F F, YUAN Y H, FAN H B, et al. Effects of elevated nitrogen deposition on soil organic carbon mineralization and soil enzyme activities in a Chinese fir plantation [J]. Acta Ecologica Sinica, 2012, 32(2): 517-527.
    [13]
    LIU J C, CHEN J L, JIN G Z. Response of soil organic carbon and nutrients to simulated nitrogen deposition in typical mixed broadleaved-korean pine forest [J]. Bulletin of Botanical Research, 2014, 34(1): 121-130.
    [13]
    HGBERG P. Nitrogen impacts on forest carbon[J]. Nature, 2007, 447: 781-782.
    [14]
    LU M, ZHOU X H, LUO Y Q, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis[J]. Agriculture, Ecosystems and Environment, 2011, 140(1-2): 234-244.
    [14]
    YUAN Y H, FAN H B, WANG Q, et al. Available nutrients with increased N deposition in soils of Cunninghamia lanceolata plantations [J]. Journal of Zhejiang Forestry College, 2007, 24(4): 437-444.
    [15]
    LI G C, HAN X G, HUANG J H, et al. A review of affecting factors of soil nitrogen mineralization in forest ecosystems [J]. Acta Ecologica Sinica, 2001, 21(7): 1187-1195.
    [15]
    HGBERG P. What is the quantitative relation between nitrogen deposition and forest carbon sequestration?[J]. Global Change Biology, 2012, 18(1): 1-2.
    [16]
    SUTTON M A, SIMPSON D, LEVY P E, et al. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration[J]. Global Change Biology, 2008, 14(9): 2057-2063.
    [17]
    TRUMBORE S E. Potential response of soil organic carbon to global environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 8284-8291.
    [18]
    涂利华,胡庭兴,张健,等.模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响 [J]. 植物生态学报, 2011, 35(2): 125-136.
    [19]
    GU F, ZHANG Y, TAO B, et al. Modeling the effects of nitrogen deposition on carbon budget in two temperate forests[J]. Ecological Complexity, 2010, 7(2): 139-148.
    [20]
    PREGITZER K S, BURTON A J, ZAK D R, et al. Stimulated chronic nitrogen deposition increase carbon storage in Northern Temperate forests[J]. Global Change Biology, 2008, 14 (1):142-153.
    [21]
    史广松. 山西太岳山针阔叶混交林土壤呼吸速率研究[D]. 北京: 北京林业大学, 2009.
    [22]
    李化山, 汪金松, 赵秀海, 等. 模拟氮沉降下去除凋落物对太岳山油松林土壤呼吸的影响[J]. 生态学杂志, 2014, 33(4): 857-866.
    [23]
    李化山, 汪金松, 刘星, 等. 模拟N沉降对太岳山油松人工林和天然林草本群落的影响[J]. 生态学报, 2015, 35(11): 1-15.
    [24]
    李化山, 汪金松, 刘星, 等. 模拟N沉降对太岳山油松林土壤呼吸的影响及其持续效应 [J]. 环境科学学报, 2014, 34(1): 238-249.
    [25]
    中国土壤学会. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社, 1999.
    [26]
    SCHLESINGER W H, ANDREWS J A. Soil respiration and the global carbon cycle [J]. Biogeochemistry, 2000, 48(1):7-20.
    [27]
    沈芳芳. 模拟氮沉降对杉木人工林土壤有机碳库的影响 [D]. 南昌: 江西农业大学, 2011.
    [28]
    郭依秋, 范秀华, 汪金松, 等. 太岳山油松林土壤微生物量对模拟氮沉降的响应 [J]. 应用与环境生物学报, 2013, 19(4): 605-610.
    [29]
    樊后保, 袁颖红, 王强, 等. 氮沉降对杉木人工林土壤有机碳和全氮的影响 [J]. 福建林学院学报, 2007, 27(1): 1-6.
    [30]
    沈芳芳, 袁颖红, 樊后保, 等. 氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响 [J]. 生态学报, 2012, 32(2): 517-527.
    [31]
    TIETEMA A, EMMET B A, GUNDERSEN P, et al. The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems [J]. Forest Ecology and Management, 1998, 101: 19-27.
    [32]
    SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315.
    [33]
    刘建才, 陈金玲, 金光泽. 模拟氮沉降对典型阔叶红松林土壤有机碳和养分的影响 [J]. 植物研究, 2014, 34(1): 121-130.
    [34]
    JOHNSON D W. Nitrogen retention in forest soils [J]. Journal of Environmental Quality, 1992, 21(1): 1-12.
    [35]
    袁颖红, 樊后保, 王强, 等. 模拟氮沉降对杉木人工林土壤有效养分的影响 [J]. 浙江林学院学报, 2007, 24(4): 437-444.
    [36]
    李贵才, 韩兴国, 黄建辉, 等. 森林生态系统土壤氮矿化影响因素研究进展 [J]. 生态学报, 2001, 21(7): 1187-1195.
  • Related Articles

    [1]Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073
    [2]Xing Yuhua, Zhang Dapeng, Li Siying, Wang Pei. Integration and simulation analysis of temperature gradient based 3T and resistance-based evapotranspiration model[J]. Journal of Beijing Forestry University, 2024, 46(4): 115-126. DOI: 10.12171/j.1000-1522.20230198
    [3]Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it[J]. Journal of Beijing Forestry University, 2023, 45(4): 136-146. DOI: 10.12171/j.1000-1522.20220506
    [4]Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213
    [5]Yu Yongzhu, Guan Cheng, Zhang Houjiang, Yao Xiaorui, Zhang Dian, Xin Zhenbo. Numerical simulation on the influence of wall wood column defects on the safety of ancient building[J]. Journal of Beijing Forestry University, 2022, 44(1): 132-145. DOI: 10.12171/j.1000-1522.20210341
    [6]Liu Fangni, Yin Hao, Zhou Xu. Numerical simulation study on the influence of greening between buildings on sunlight conditions of building in residential area[J]. Journal of Beijing Forestry University, 2020, 42(12): 101-114. DOI: 10.12171/j.1000-1522.20200039
    [7]Ou Zina, Zhang Houjiang, Guan Cheng. Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building[J]. Journal of Beijing Forestry University, 2020, 42(4): 142-154. DOI: 10.12171/j.1000-1522.20190328
    [8]LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117.
    [9]HAO Yan-hua, ZHANG Xiang-xue, DING Xiao-kang, LIU Jiao. Analysis and measurement of ultrasonic acoustic emissions from the cavitation in xylem sap.[J]. Journal of Beijing Forestry University, 2012, 34(3): 36-40.
    [10]YANG Xue, CHEN Guang-yuan, FENG Li-ning, LI Jian-rong. Investigation of airflow uniformity at air-exchange device in drying kiln by numerical simulation[J]. Journal of Beijing Forestry University, 2011, 33(4): 113-117.
  • Cited by

    Periodical cited type(7)

    1. 高斯远,曹广超,刁二龙,何启欣,程梦园,邱巡巡,程国,赵美亮. 盛行风作用下柴木达盆地典型多花柽柳灌丛资源岛特征. 水土保持通报. 2022(04): 293-300 .
    2. 董正武,李生宇,毛东雷,雷加强. 古尔班通古特沙漠西南缘柽柳沙包土壤粒度分布特征. 水土保持学报. 2021(04): 64-72+79 .
    3. 王永兵,李亚萍. 古尔班通古特沙漠南缘梭梭固沙林土壤粒度的分异规律. 水土保持通报. 2020(03): 75-80 .
    4. 杨异婷. 坡度及旅游干扰对土壤粒度特征的影响. 绿色科技. 2019(02): 12-16 .
    5. 张帅,丁国栋,高广磊,赵媛媛,于明含,包岩峰,王春媛. 风沙区公路防积沙的新型防护栏研究. 北京林业大学学报. 2018(02): 90-97 . 本站查看
    6. 谭凤翥,王雪芹,王海峰,徐俊荣,袁鑫鑫. 柽柳灌丛沙堆及丘间地蚀积分布随背景植被变化的风洞实验. 干旱区地理. 2018(01): 56-65 .
    7. 安志山,张克存,谭立海,蔡迪文,张余. 论沙漠-绿洲过渡带的风沙防护效应. 干旱区研究. 2017(05): 1196-1202 .

    Other cited types(7)

Catalog

    Article views (1805) PDF downloads (58) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return