• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
LU Jun, ZHANG Hui-ru, LEI Xiang-dong, YANG Ying-jun, WANG Quan-jun. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains.[J]. Journal of Beijing Forestry University, 2015, 37(11): 10-25. DOI: 10.13332/j.1000-1522.20140429
Citation: LU Jun, ZHANG Hui-ru, LEI Xiang-dong, YANG Ying-jun, WANG Quan-jun. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains.[J]. Journal of Beijing Forestry University, 2015, 37(11): 10-25. DOI: 10.13332/j.1000-1522.20140429

Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains.

More Information
  • Received Date: November 23, 2014
  • Published Date: November 29, 2015
  • Total tree height (H) and diameter at breast height (D) outside bark are two most essential variables in most forest inventories, but the height curves for saplings have rarely been developed so far. Using the data from 12 permanent 1-ha sample plots investigated in 2013, we found that, among 35 empirical tree height-diameter at breast height model, the cubic polynomial proposed by Curtis in 1967 (h=a0+a1d+a2d2+a3d3) well fit the height-diameter model of saplings of five species in Changbai Mountains, and the coefficient of determination for Pinus koraiensis was the highest (R2=0.786 5). The validation of the models showed that all the models performed well and were quite suitable to the saplings in spruce-fir mixed forest in this area. The analysis of tree height growth for the five species by space substitute time indicated that the height of Acer mono was higher than others, the height growth of Pinus koraiensis and Abies nephrolepis was similar, and the height growth of spruce was low in early stage but increased quickly afterwards.
  • [1]
    李希菲,唐守正,袁国仁. 自动调控树高曲线和一元立木材积模型[J]. 林业科学研究,1994,7( 5):512-518.
    [1]
    LI X F, TANG S Z, YUAN G R. Self-adjusted height-diameter curves and one-entry volume model [J]. Forest Research, 1994,7( 5):512-518.
    [2]
    WANG M L, TANG S Z.Research on universal height-diameter curves [J].Forest Research, 1997, 10(3):259-264.
    [2]
    王明亮.唐守正.标准树高曲线的研制[J].林业科学研究,1997,10(3):259-264.
    [3]
    王明亮.李希菲.非线性树高曲线模型的研究[J].林业科学研究,2000,13(1):75-79.
    [3]
    WANG M L, LI X F.Research on nonlinear height-diameter models [J].Forest Research, 2000, 13(1):75-79.
    [4]
    向玮,吕勇,邱林. 湖南黄丰桥林场杉木树高曲线模拟研制[J]. 中南林业调查规划, 2007,26(1):16-18.
    [4]
    XIANG W, L Y, QIU L. Models for tree height curves of Cunninghamia lanceolata[J]. Central South Forest Inventory and Planning, 2007, 26(1):16-18.
    [5]
    ZENG C, LEI X D, LIU X Z. Individual tree height-diameter curves of Larch-spruce-fir forests[J]. Forest Research, 2009,22(2):182-189.
    [5]
    曾翀,雷相东,刘宪钊,等. 落叶松云冷杉林单木树高曲线的研究[J]. 林业科学研究,2009,22(2):182-189.
    [6]
    LI H K, FA L. Height-diameter model for major tree species in China using the classified height method [J]. Scientia Silvae Sinicae,2011,47(10): 83-90.
    [6]
    CURTIS R O, CLENDENE G W, DEMARS D J. A new stand simulator for coast Douglas-fir: DFSIM users guide[R/OL]. Portland: United State Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, 1981[2015-07-13]. http:∥library.wur.nl/WebQuery/clc/186776.
    [7]
    ZHENG Y R, XU W D. The models of relationship between height growth of Picea mongolica and site conditions [J]. Chinese Journal of Ecology, 1997,16(6):62-66.
    [7]
    HUANG S, TITUS S J. An age-independent individual tree height prediction model for boreal spruce-aspen stands in Alberta [J]. Canadian Journal of Forest Research, 1994, 24: 1295-1301.
    [8]
    TONG Y W, XIANG W H, WANG Z W. Effects of topography, neighbouring plants and size-dependence of Machillus thunberii on sapling growth and survivorship [J]. Biodiversity Science, 2013, 21(3): 269-277.
    [8]
    HUANG S, TITUS S J, WIENS D P. Comparison of nonlinear height-diameter functions for major Alberta tree species [J]. Canadian Journal of Forest Research, 1992, 22: 1297-1304.
    [9]
    李海奎,法蕾. 基于分级的全国主要树种树高-胸径曲线模型[J]. 林业科学,2011,47(10): 83-90.
    [9]
    FAN C N, PANG S J, ZHENG J P. Biomass estimating models of saplings for 14 species in Changbaishan Mountains, northeastern China [J]. Journal of Beijing Forestry University, 2013, 35(2): 1-9.
    [10]
    LIU C Z, LI J Q, JIN K G. Correlativity of the growth of young Korean pine and the condition in the forest [J]. Journal of Northeast Forestry University, 1991, 19(3): 103-108.
    [10]
    CURTIS R O. Height-diameter and height-diameter-age equations for second-growth Douglas-fir [J]. Forest Science, 1967, 13: 365-375.
    [11]
    ZHOU W, YANG H, KANG X G. Diameter class diversity and spatial structure of primary Spruce-fir forest in the Changbai Mountains [J]. Acta Agriculturae Universitatis Jiangxiensis, 2012, 34(2): 311-316.
    [11]
    WYKOFF W R, CROOKSTON N L, STAGE A R. Users guide to the stand prognosis model[R/OL]. Ogdden: United State Department of Agriculture, 1982[2015-07-15]. http:∥www.fs.fed.us/rm/pubs_int/int_gtr133.pdf.
    [12]
    HUANG X F, KANG X G. A review on the study of regeneration of natural Spruce-Fir mixed stand of coniferous and broad-leaved trees in China [J]. World Forestry Research, 2004, 17(5): 34-38.
    [12]
    ARNEY J D. A modeling strategy for the growth projection of managed stands[J]. Canadian Journal of Forest Research, 1985, 15: 511-518.
    [13]
    LARSEN D R, HANN D W. Height-diameter equations for seventeen tree species in southwest Oregon[R/OL]. Corvallis: Forest Research Laboratory, College of Forestry, Oregon State University, 1987[2015-07-15]. http:∥ir.library.oregonstate.edu/xmlui/handle/1957/8245.
    [13]
    ZHAO J H, KANG X G, ZHANG H D. Generalized height-diameter models for three main coniferous trees species in Changbai Mountain [J]. Scientia Silvae Sinicae, 2010, 46(10): 191-194.
    [14]
    JIA W W. Study on prediction model of Pinus sylvestris plantation branch growth and knot size [D]. Harbin: Northeast Forestry University, 2006.
    [14]
    WANG C, HANN D W. Height-diameter equations for sixteen tree species in the central western Willamette Valley of Orgon[R/OL]. Corvallis: Forest Research Laboratory, College of Forestry, Oregon State University, 1988[2015-07-15].http:∥ir.library.oregonstate.edu.xmlui/handle/1957/8247.
    [15]
    LU J. Maoershan natural forest canopy structure and space optimization management [D]. Harbin: Northeast Forestry University, 2008.
    [15]
    STOUT B B, SHUMWAY D L. Site quality estimation using height and diameter [J]. Forest Science, 1982,28: 639-645.
    [16]
    LIU Z G.Study on simulation technology of crown dynamic 3D graphics [D]. Harbin: Northeast Forestry University, 2007.
    [16]
    HUANG S, TITUS S J. An index of site productivity for uneven-aged and mixed-species stands [J]. Canadian Journal of Forest Research, 1993, 23: 558-562.
    [17]
    HU Q P, GUO Z H, SUN L L. Response of leaf functional traits of Betula ermanii saplings to the altitudinal Variation [J]. Acta Ecology Sinica, 2013, 33(12): 3594-3601.
    [17]
    VANCLAY J K. Modelling forest growth and yield: application to mixed tropical forests[J]. Lismore: Southern Cross University, 1994.
    [18]
    HENRIKSEN H A. Height-diameter curve with logarithmic diameter: brief report on a more reliable method of height determination from height curves, introduced by the State Forest Research Branch [J].Dansk Skovforeningens Tidsskrift, 1950, 35: 193-202.
    [18]
    ZHANG Q, FAN S H, SHEN H L. Research and development on the growth environment of the young tree of Pinus koraiensis in Pinus koraiensis-broadleaved mixed forest [J]. Forest Research, 2003, 16(2): 216-224.
    [19]
    TROREY L G. A mathematical method for the construction of diameter height curves based on site [J]. The Forestry Chronicle, 1932, 8:121-132.
    [19]
    ZHANG Q, FAN S H, SHEN H L. Influence of the spatial structure of trees, etc. on the young trees of Pinus koraiensis under natural secondary forest[J]. Forest Research, 2004, 17(4): 405-412.
    [20]
    SCHUMACHER F X. A new growth curve and its application to timber yield studies [J]. Journal of Forestry, 1939, 37:819-820.
    [21]
    MYERS H A. A mathematical expression for height curve [J]. Journal of Forestry, 1940, 38: 415-420.
    [22]
    FELDPAUSCH T R, BANIN L, PHILLIPS O L, et al. Height-diameter allometry of tropical forest trees [J]. Biogeosciences Discussions, 2010, 7:7727-7793.
    [23]
    RUSSELL M B, AMATEIS R L, BURKHART H E. Implementing regional locale and thinning response in the loblolly pine height-diameter relationship [J]. Southern Journal Applied Forestry, 2010, 34:21-27.
    [24]
    STANKOVA T V, DIGUEZ-ARANDA U. Height-diameter relationships for Scots pine plantations in Bulgaria: optimal combination of model type and application [J]. Annals of Forest Research, 2013, 56(1): 149-163.
    [25]
    ARCANGELI C, KLOPF M, HALE S E, et al. The uniform height curve method for height-diameter modelling: an application to Sitka spruce in Britain [J]. Forestry, 2014,87(1): 177-186.
    [26]
    KEARSLEY E, DE HAULLEVILLE T, HUFKENS K, et al. Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin [J]. Nature Communications, 2014, 16:2269-2269.
    [27]
    KOZAK A. A variable-exponent taper equation [J]. Canadian Journal of Forest Research, 1988, 18: 1363-1368.
    [28]
    郑元润,徐文铎. 沙地云杉小树高生长与环境条件关系的数量化模型[J]. 生态学杂志,1997,16(6):62-66.
    [29]
    童跃伟,项文化,王正文. 地形、邻株植物及自身大小对红楠幼树生长与存活的影响[J]. 生物多样性, 2013, 21(3): 269-277.
    [30]
    范春楠,庞圣江,郑金萍. 长白山林区14种幼树生物量估测模型[J]. 北京林业大学学报, 2013, 35(2): 1-9.
    [31]
    刘传照,李俊清,金奎刚. 林下光照条件与红松幼树生长的相关性研究[J]. 东北林业大学学报, 1991, 19(3): 103-108.
    [32]
    周蔚,杨华,亢新刚. 长白山云冷杉原始林径阶多样性及空间结构分析[J]. 江西农业大学学报, 2012, 34(2): 311-316.
    [33]
    黄新峰,亢新刚. 我国天然云冷杉针阔混交林更新研究进展[J]. 世界林业研究, 2004, 17(5): 34-38.
    [34]
    赵俊卉,亢新刚,张慧东. 长白山3个主要针叶树种的标准树高曲线[J].林业科学, 2010, 46(10): 191-194.
    [35]
    贾炜玮. 樟子松人工林枝条生长及节子大小预测模型的研究[D].哈尔滨:东北林业大学, 2006.
    [36]
    卢军. 帽儿山天然次生林树冠结构和空间优化经营[D].哈尔滨:东北林业大学,2008.
    [37]
    刘兆刚. 樟子松人工林树冠动态三维图形模拟技术的研究[D]. 哈尔滨:东北林业大学,2007.
    [38]
    胡启鹏,郭志华,孙玲玲. 长白山林线树种岳桦幼树叶功能型性状随海拔梯度的变化[J]. 生态学报, 2013, 33(12): 3594-3601.
    [39]
    张群,范少辉,沈海龙. 红松混交林中红松幼树生长环境的研究进展及展望[J]. 林业科学研究, 2003, 16(2): 216-224.
    [40]
    张群,范少辉,沈海龙. 次生林林木空间结构等对红松幼树生长的影响[J]. 林业科学研究, 2004, 17(4): 405-412.
  • Related Articles

    [1]Zhang Houjiang, Li Yufeng. Content and research progress in nondestructive testing of wooden structures in ancient architecture[J]. Journal of Beijing Forestry University, 2024, 46(4): 1-13. DOI: 10.12171/j.1000-1522.20240015
    [2]Ye Qi, Guan Cheng, Zhang Houjiang, Gong Yingchun, Sui Yongfeng, Liu Lige. Optimization of finger joint parameters and nondestructive testing of bending properties of radiata pine laminates[J]. Journal of Beijing Forestry University, 2022, 44(3): 148-160. DOI: 10.12171/j.1000-1522.20210351
    [3]Li Huan, Guan Cheng, Zhang Houjiang, Liu Jinhao, Zhou Jianhui, Xin Zhenbo. Determining modulus of elasticity of full-size plywood panel simply supported on two opposite sides using a vibration method[J]. Journal of Beijing Forestry University, 2021, 43(2): 138-149. DOI: 10.12171/j.1000-1522.20200300
    [4]WANG Yun-lu, WANG Zheng, LI Min-min, CAO Yu. Discussion on static testing method of material MDF constants of elastic modulus, Poisson's ratio and shear modulus[J]. Journal of Beijing Forestry University, 2017, 39(10): 117-121. DOI: 10.13332/j.1000-1522.20170107
    [5]FENG Li, QIN Nan. Dominant factor analysis of dynamic Young modulus of poplar LVL.[J]. Journal of Beijing Forestry University, 2012, 34(4): 146-148.
    [6]ZHANG Hou-jiang, GUO Zhi-ren, John F Hunt, FU Feng. Measuring modulus of elasticity for thin wood composites using a dynamic method[J]. Journal of Beijing Forestry University, 2010, 32(2): 149-152.
    [7]ZHAN Jianfeng, GU Jiyou, CAI Yingchun.. Dynamic viscoelastic characteristics of larch timber during conventional drying process. [J]. Journal of Beijing Forestry University, 2009, 31(1): 125-129.
    [8]JIANG Jiali, LV Jian-xiong.. Dynamic viscoelastic properties of drying treated wood.[J]. Journal of Beijing Forestry University, 2008, 30(3): 96-100.
    [9]JIANG Jia-li, LÜ Jian-xiong, ZHAO Guang-jie. Viscoelastic properties of wood treated by different reagents[J]. Journal of Beijing Forestry University, 2006, 28(1): 88-92.
    [10]ZHANG Hou-jiang, SHEN Shi-jie, CUI Ying-ying, MIAO Yi, WANG Ying-kun. Measuring elastic modulus of wood using vibration method[J]. Journal of Beijing Forestry University, 2005, 27(6): 91-94.
  • Cited by

    Periodical cited type(9)

    1. 辛守英,王晓红,焦琳琳. 基于遥感数据和优化Blending算法的人工林地上生物量估算研究. 西北林学院学报. 2025(02): 207-219 .
    2. 郝君,吕康婷,胡天祺,王云阁,徐刚. 基于机器学习的红树林生物量遥感反演研究. 林草资源研究. 2024(01): 65-72 .
    3. 李敏,陈利,李静泰,闫丹丹,刘垚,吴翠玲,栾兆擎. 基于Sentinel-2数据的互花米草地上生物量反演. 海洋环境科学. 2024(03): 386-397 .
    4. 廖易,张加龙,鲍瑞,许冬凡. 基于Landsat的高山松地上生物量动态变化估测模型构建. 西南林业大学学报(自然科学). 2023(01): 117-125 .
    5. 郭芮,伏帅,侯蒙京,刘洁,苗春丽,孟新月,冯琦胜,贺金生,钱大文,梁天刚. 基于Sentinel-2数据的青海门源县天然草地生物量遥感反演研究. 草业学报. 2023(04): 15-29 .
    6. 廖易,张加龙,鲍瑞,许冬凡,王书贤,韩冬阳. 引入地形因子的高山松地上生物量动态估测. 生态学杂志. 2023(05): 1243-1252 .
    7. 王熙媛,张王菲,李云,杨仙保. 依据光学遥感特征优选的森林地上生物量反演. 东北林业大学学报. 2022(04): 47-54 .
    8. 陈园园,张晓丽,高显连,高金萍. 基于Sentinel-1和Sentinel-2A的西小山林场平均树高估测. 应用生态学报. 2021(08): 2839-2846 .
    9. 陈小芳,李军,李新伟,周毅. 基于高光谱的水稻生物量估测模型研究. 安徽科技学院学报. 2021(05): 53-59 .

    Other cited types(11)

Catalog

    Article views (1869) PDF downloads (78) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return