• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
SUN Li-li, CAO Chuan-wang, XUE Xu-ting, WANG Zhi-ying, DU Chun-yan. Preparation and fungicidal bioactivity of wettable powder formulations of Trichoderma asperellum[J]. Journal of Beijing Forestry University, 2015, 37(6): 45-52. DOI: 10.13332/j.1000-1522.20140438
Citation: SUN Li-li, CAO Chuan-wang, XUE Xu-ting, WANG Zhi-ying, DU Chun-yan. Preparation and fungicidal bioactivity of wettable powder formulations of Trichoderma asperellum[J]. Journal of Beijing Forestry University, 2015, 37(6): 45-52. DOI: 10.13332/j.1000-1522.20140438

Preparation and fungicidal bioactivity of wettable powder formulations of Trichoderma asperellum

More Information
  • Received Date: November 30, 2014
  • We prepared microbiological fungicide using conidial germination powder and freeze-dried fermentation broth powder of Trichoderma asperellum in this study. Based on measuring the bioactivity of primary adjuncts to T. asperellum, the effects of adjuncts on formulation properties were further tested according to orthogonal experimental design, and then the optimal species and contents of the adjuncts were finally determined. The wettable powder was formulated with a Muller mixer to blend conidial germination and freeze-dried fermentation broth powder of T. asperellum and adjuncts. The inhibitory activities of wettable powder formulation to Sclerotinia sclerotiorum with different ratios of conidial germination to freeze-dried fermentation broth powder of T. asperellum were evaluated. The results showed that the optimal mass ratio of conidial germination to freeze-dried fermentation broth power of T. asperellum in the wettable powder formulation was 1∶1, and the wetting dispersant was composed of 1% Morwet EFW, 5% TERWET 1010, 5% Morwet D425 and 7% calcium lignosulfonate, using 0.3% nano zinc oxide as UV protectants and diatomite as carrier to make up 100%. The conidial germination was 88.57%, mass suspension percentage was 81.79%, conidial suspension percentage was 80.12% and average particle size was 27 μm, and the wetting time for the formulation was10 s, which accorded with the standard for commercial formulations,i.e., small particle size, high suspensibility and good shelf life. All different mixed formulations had different synergistic effects, but 1∶1 ratio of formulation was significantly synergistic. The wettable power formulations (1 600×) containing both conidial germination and freeze-dried fermentation broth power had 21.67% and 12.09% higher control efficacy to S. sclerotiorum than that of wettable powder formulations containing only conidial or freeze-dried fermentation broth power. The inhibition of wettable power formulation to S. sclerotiorum ranged from 64.17% to 88.67%. Therefore, this formulation is an environment-friendly green pesticide,and our study provides a new bio-fungicide in biological control of plant diseases in agriculture and forestry.
  • [1]
    朱兆香, 庄文颖. 木霉属研究概况[J]. 菌物学报, 2014, 33(6): 1136-1153.
    [1]
    ZHU Z X, ZHUANG W Y. Current understanding of the genus Trichoderma (Hypocreales, Ascomycota) [J]. Mycosystema, 2014, 33(6): 1136-1153.
    [2]
    张广志, 杨合同, 张新建, 等. 木霉现有种类名录[J]. 菌物学报, 2014, 33(6): 1210-1230.
    [2]
    ZHANG G Z, YANG H T, ZHANG X J, et al. A checklist of known species of Trichoderma [J]. Mycosystema, 2014, 33(6): 1210-1230.
    [3]
    ZHANG G Z, YANG H T, ZHANG X J, et al. The biocontrol test of chlorpyrifos-degrading Trichoderma strains on soil born pathogenic fungi [J]. Mycosystema, 2014, 33(6): 1292-1301.
    [3]
    WEINDLING R. Trichoderma lgnorum as a parasite of other soil fungi[J]. Phytopathology, 1932, 22: 837-845.
    [4]
    HOWELL C R. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts[J]. Plant Disease, 2003, 87(1): 4-10.
    [4]
    QU Y H, WANG Q,YAO Y B, et al. Antagonistic Trichoderma isolates against potato late blight caused by Phytophthora infestans[J]. Mycosystema, 2014, 33(6): 1231-1241.
    [5]
    CHEN J, DOU K, GAO Y D, et al. Mechanism and application of Trichoderma spp. in biological control of corn diseases [J]. Mycosystema, 2014, 33(6): 1154-1167.
    [5]
    HARMAN G E, HOWELL C R, VITERBO A, et al. Trichoderma species-opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology, 2004, 2(1): 43-56.
    [6]
    CHEN Y F, GAO Y. The application of Trichoderma spp. in biological control of plant diseases [J]. Jiangsu Agricultural Sciences, 2008(5): 123-125.
    [6]
    张广志, 杨合同, 张新建, 等. 毒死蜱降解木霉菌对几种重要植物病原真菌的生防活性[J].菌物学报, 2014, 33(6): 1292-1301.
    [7]
    ZHANG Y L. Control of pepper blight using combination of Trichoderma spp. and fungicides [D]. Hangzhou: Zhejiang University, 2013:20-25.
    [7]
    曲远航, 王琦, 姚彦坡, 等. 马铃薯晚疫病生防木霉菌的筛选及鉴定[J].菌物学报, 2014, 33(6): 1231-1241.
    [8]
    ZHOU R X, DONG K J. Expounding on pesticide pollution and environmental protection [J]. Environmental Protection of Xinjiang, 1999(1): 31-32.
    [8]
    陈捷, 窦恺, 高永东, 等. 木霉菌在玉米病害生物防治中的作用机制及应用[J]. 菌物学报, 2014, 33(6): 1154-1167.
    [9]
    SAMUELS G J, DODD S L, LU B S, et al. The Trichoderma koningii aggregate species[J]. Studies in Mycology, 2006, 56: 67-133.
    [9]
    FANG Z D. Study method of plant pathology [M]. Beijing: Agricultural Press, 1977: 173-175.
    [10]
    HARMAN G E. Myth and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22[J]. Plant Disease, 2000, 84(4): 377-393.
    [10]
    ZHANG M, PENG H X, DENG X P, et al. Research on the wettable powder of Trichoderma spp. with each gram 500 million living conidia [J]. Southwest China Journal of Agricultural Sciences, 2008, 21(3): 675-679.
    [11]
    陈云芳, 高渊. 木霉在植物病害生物防治中的应用[J]. 江苏农业科学, 2008(5): 123-125.
    [11]
    WANG Z Y, SUN L L, ZHANG J, et al. Preparation and insecticidal efficacy of wettable powder formulations of Bacillus thuringiensis and Beauveria bassiana[J]. Journal of Beijing Forestry University, 2014, 36(3): 34-40.
    [12]
    GAI J Y. Experimental statistical methods [M].Beijing: China Agricultural Press, 2005: 294-295.
    [12]
    PONMURUGAN P, BABY U I. Evaluation of fungicides and biocontrol agents against Phomopsis canker of tea under field condition[J]. Australasian Plant Pathology, 2007, 36(1): 68-72.
    [13]
    ALMEIDA F B, CERQUEIRA F M, SILVA RDO N, et al. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production[J]. Biotechnology Letters, 2007, 29(8):1189-1193.
    [13]
    GB/T5451—2001 Method for determination of wettability of pesticide wettable powder formulation [S]. Beijing: China Standard Press,2001.
    [14]
    GB/T14825—2006 Method for determination of suspension percentage of pesticide [S]. Beijing: China Standard Press, 2006.
    [14]
    BENITEZ T, RINCON A M, LIMON M C, et al. Biocontrol mechanisms of Trichoderma strains[J]. International Microbiology, 2004, 7(4): 249-260.
    [15]
    GB/T1600—3 Method for determination of pH value [S]. Beijing: China Standard Press ,1993.
    [15]
    HERMOSA R, RUBIO M B, CARDOZA R E, et al. The contribution of Trichoderma to balancing the costs of plant growth and defense[J]. International Microbiology, 2013, 16(2): 69-80.
    [16]
    KAEWCHAI S, SOYTONG K, HYDE K D. Mycofungicides and fungal biofertilizers[J]. Fungal Diversity, 2009, 38(11): 25-50.
    [16]
    GB/T 17980.35—2000 Guidelines for the field efficacy trials of pesticide (Ⅰ): fungicides against Sclerotinia stem rot of rape [S]. Beijing: China Standard Press ,2000.
    [17]
    SANTIAGO DE A, GARCIA-LOPEZ A M, QUINTERO J M, et al. Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils[J]. Soil Biology and Biochemistry. 2013, 57: 598-605.
    [17]
    ZHANG J R. Study and application of special adjuncts of prometryn [J]. Modern Agrochemicals, 2003(4):24-26.
    [18]
    LI M, YANG Q, WANG S, et al. Trichoderma harzianumin combination with carbendazim for integrated control of rice seedling blight [J]. Journal of Zhejiang University: Agriculture Life Science, 2009, 35(1):65-70.
    [18]
    ADZMI F, MEON S, MUSA M H, et al. Preparation, characterization and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay[J]. Journal of Microencapsulation, 2012, 29(3): 205-210.
    [19]
    MBARGA J B, BEGOUDE B A D, AMBANG Z, et al. A new oil-based formulation of Trichoderma asperellum for the biological control of cacao black pod disease caused by Phytophthora megakarya[J]. Biological Control, 2014, 77:15-22.
    [19]
    TIAN L S, FENG S B. Screen on endurance strains of Trichoderma and control of Botrytis cinerea [J]. Biotechnology, 2005, 15(5): 26-28.
    [20]
    ZIMAND G, ELAD Y, CHET I. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity[J]. Phytopathology, 1996 , 86(5) : 945-956.
    [20]
    NIU F S, MA Z Q, BI Q Y, et al. Synergism of Trichoderma harzianum and five fungicides to Botrytis cinerea [J]. Chinese Journal of Pesticide Science, 2013, 15(2): 165-170.
    [21]
    CAO C W, WANG C, GAO C Q, et al. Preparation and application of wettable powder formulations of Trichoderma asperellum: China, 201210492682.3[P]. 2013-02-13.
    [21]
    KREDICS L, ANTAL Z, MANCZINGER L, et al. Influence of environmental parameters on Trichoderma strains with biocontrol potential[J]. Food Technology and Biotechnology, 2003, 41(1): 37-42.
    [22]
    CHEN X L, FANG X, SHEN Y C. Mechanism, resistance and security of Jinggangmycin against Rhizoctonia solani [J]. Agrochemicals, 2010, 49(7): 482-483.
    [22]
    BILJANA G, JUGOSLAV Z. The influence of Trichoderma harzianum on reducing root rot disease in tobacoo seedlings caused by Rhizoctonia solani[J]. International Journal of Pure and Applied Sciences and Technology, 2011, 2(2):1-11.
    [23]
    YANG P, YANG Q, XU Q. Study on metabolites related to biocontrol from Trichoderma asperellum[J]. Journal of Harbin University of Commerce:Natural Sciences Edition, 2014, 30(1): 37-40.
    [23]
    SADYKOVA V S, GROMOVYKH T I. Resistance of barley root rot pathogens to chemical and biological fungicides[J]. Russian Agricultural Sciences, 2011, 37(2):126-129.
    [24]
    张艳丽. 木霉制剂和杀菌剂协同控制辣椒疫病的研究[D]. 杭州:浙江大学,2013:20-25.
    [25]
    MONTE E, RODRIGUEZ A, REY M, et al. Applications of Trichoderma formulations in crop protection[J]. Journal of Zhejiang University:Agriculture Life Science, 2004, 37(4): 410.
    [26]
    KRAUSS U, HOOPEN M, REES R, et al. Mycoparasitism by Clonostachys byssicola and Clonostachys rosea on Trichoderma spp. from cocoa (Theobroma cacao) and implication for the design of mixed biocontrol agents[J]. Biological Control, 2013, 67(3): 317-327.
    [27]
    周睿霞, 董开军. 谈农药污染与环境保护[J]. 新疆环境保护, 1999(1):31-32.
    [28]
    方中达.植病研究方法[M]. 北京:农业出版社, 1977:173-175.
    [29]
    张敏, 彭化贤, 邓新平, 等. 5亿活孢子/克木霉可湿性粉剂的研制[J]. 西南农业学报, 2008, 21(3) : 675-679.
    [30]
    王志英, 孙丽丽, 张健, 等.苏云金杆菌和白僵菌可湿性粉剂研制及杀虫毒力测定[J].北京林业大学学报, 2014, 36(3) : 34-40.
    [31]
    盖钧镒. 试验统计方法[M]. 北京: 中国农业出版社, 2005: 294-295.
    [32]
    GB/T 5451—2001农药可湿性粉剂润湿性测定方法[S]. 北京: 中国标准出版社, 2001.
    [33]
    GB/T 14825—2006 农药悬浮率测定方法[S]. 北京: 中国标准出版社, 2006.
    [34]
    GB/T 1600—3 pH值测定方法[S].北京:中国标准出版社,1993.
    [35]
    GB/T 17980.35—2000农药田间药效试验准则(一):杀菌剂防治油菜菌核病[S]. 北京:中国标准出版社, 2000.
    [36]
    张建荣. 扑草净悬浮剂专用助剂的研究和应用[J]. 现代农药, 2003(4): 24-26.
    [37]
    李敏, 杨谦, 王疏, 等. 哈茨木霉与多菌灵复合使用对水稻苗期立枯病的防治[J]. 浙江大学学报:农业与生命科学版, 2009, 35(1): 65-70.
    [38]
    田连生, 冯树波. 耐药性木霉株的筛选及其对灰霉病的防治[J]. 生物技术, 2005,15(5): 26-28.
    [39]
    牛芳胜, 马志强, 毕秋艳, 等. 哈茨木霉菌与5种杀菌剂对番茄灰霉病菌的协同作用[J].农药学学报,2013,15(2): 165-170.
    [40]
    曹传旺, 王超, 高彩球, 等. 棘孢木霉可湿性粉剂及其应用:中国, 201210492682.3[P]. 2013-02-13.
    [41]
    陈小龙, 方夏, 沈寅初. 纹枯病菌对井冈霉素的作用机制、抗药性及安全性[J].农药, 2010, 49(7): 482-483.
    [42]
    KUMAR D P, RAJESH K S,ANUPAMA P D, et al. Studies on exo-chitinase production from Trichoderma asperellum UTP-16 and its characterization [J]. Indian Journal of Microbiology, 2012, 52(3):388-395.
    [43]
    杨萍,杨谦,许倩. 棘孢木霉生物防治相关代谢产物研究[J]. 哈尔滨商业大学学报:自然科学版, 2014, 30(1): 37-40.
    [44]
    KATAN J, GINZBURG C, ASSARAF M. Advances in biological control of plant diseases [M]. Beijing: China Agricultural University Press, 1996: 320-326.
  • Related Articles

    [1]Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022
    [2]He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
    [3]Zhou Yuting, Ge Xuezhen, Zou Ya, Guo Siwei, Wang Tao, Tao Jing, Zong Shixiang. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model[J]. Journal of Beijing Forestry University, 2022, 44(11): 90-99. DOI: 10.12171/j.1000-1522.20210345
    [4]Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360
    [5]Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416
    [6]Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254
    [7]Huang Mengyi, Zhao Jiaqiang, Shi Juan. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64-71. DOI: 10.12171/j.1000-1522.20190053
    [8]Yang Furong, Qi Yaodong, Liu Haitao, Xie Caixiang, Song Jingyuan. Global potential suitable area and ecological characteristics of Moringa oleifera[J]. Journal of Beijing Forestry University, 2020, 42(10): 45-54. DOI: 10.12171/j.1000-1522.20190375
    [9]ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516
    [10]SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33.
  • Cited by

    Periodical cited type(4)

    1. 齐婉芯,陈婷婷,宋佳力,安新民. 基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质. 北京林业大学学报. 2024(12): 92-102 . 本站查看
    2. 汪格格,邱诗蕊,张琳晗,杨国伟,徐小云,汪爱羚,曾淑华,刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究. 生物技术通报. 2023(02): 183-192 .
    3. 刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
    4. 庞俊秀,薛惠芬,刘婉秋,龙鸿. 三倍体丹参杂交种的花粉形态研究. 广西植物. 2021(12): 1996-2003 .

    Other cited types(3)

Catalog

    Article views (2166) PDF downloads (61) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return