• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
HE Li-hong, WANG Hai-yan, WANG Lu, WANG Yue.. Response of net primary productivity of Larix olgensis forest ecosystem to climate change.[J]. Journal of Beijing Forestry University, 2015, 37(9): 28-36. DOI: 10.13332/j.1000-1522.20140439
Citation: HE Li-hong, WANG Hai-yan, WANG Lu, WANG Yue.. Response of net primary productivity of Larix olgensis forest ecosystem to climate change.[J]. Journal of Beijing Forestry University, 2015, 37(9): 28-36. DOI: 10.13332/j.1000-1522.20140439

Response of net primary productivity of Larix olgensis forest ecosystem to climate change.

More Information
  • Received Date: November 30, 2014
  • Published Date: September 29, 2015
  • Based on the BIOME-BGC model and field-measured productivity data, a modeling study was conducted and tested to estimate the dynamic changes of net primary productivity (NPP) of Larix olgensis forest ecosystem in Wangqing Forestry Bureau, Jilin Province in northeastern China during the period of 1980-2013. The response of NPP to regional climate change and the dynamics of NPP under the SRES A2 and B2 scenarios were explored. The results were shown as follows: 1) the model-simulated NPPs were in accordance with the field-measured productivity, suggesting a successful modeling of NPP patterns by the BIOME-BGC model. 2) The mean NPP of L.olgensis was 477.74 g/(m2·a), fluctuating between 286.60 and 566.27 g/(m2·a) during 1980-2013. 3) There was a significant correlation between the NPP of L. olgensis forest ecosystem and annual precipitation. Under the SRES A2 and B2 scenarios, the NPP would have a positive response to the increase of annual precipitation. The temperature would have a stronger effect than the precipitation. The elevated CO2 would benefit the increase of NPP.
  • [1]
    PIAO S L, FANG J Y, GUO Q H. Application of CASA model to the estimation of Chinese terrestrial net primary productivity [J]. Chinese Journal of Plant Ecology, 2001, 25(5): 603-608.
    [1]
    IPCC. Climate change 2007: the physical science basis [M]. Cambridge: Cambridge University Press, 2007.
    [2]
    IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013.
    [2]
    The Commission of National Assessment Report on Climate Change. National assessment report on climate change prepared by the commission[M]. Beijing: Science Press, 2007: 149.
    [3]
    CAO M K, WOODWARD F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change [J]. Nature, 1998, 393(6682): 249-252.
    [3]
    FAN M R. The response of net primary productivity on climate change in forest ecosystem of Beijing mountain area [D]. Beijing: Beijing Forestry University, 2011.
    [4]
    ZHU W Q, PAN Y Z, ZHANG J S. Estimation of net primary of productivity of Chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 2007, 31(3): 413-424.
    [4]
    FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components [J]. Science, 1998, 281(5374): 237-240.
    [5]
    PENG C H, ZHOU X L, ZHAO S Q, et al. Quantifying the response of forest carbon balance to future climate change in Northeastern China: model validation and prediction [J]. Global and Planetary Change, 2009, 66(3): 179-194.
    [5]
    LIU G H, FU B J. Effects of global climate change on forest ecosystems [J]. Journal of Natural Resources, 2001, 16(1): 71-78.
    [6]
    YU G R, WEN X F, LI Q K, et al. Chinese subtropical and temperate typical forest ecosystem respiration of seasonal patterns and environmental response characteristics[J]. Science in China: Series D Earth Science, 2004, 34 (Suppl. Ⅱ): 84-94.
    [6]
    朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力[J]. 植物生态学报, 2001, 25(5): 603-608.
    [7]
    FAN M R, YU X X, ZHANG Z M, et al. The study of the impact of elevated CO2 concentration and climate change on net primary productivity of Quercus variabilis forest in Beijing Mountain Area [J]. Ecology and Environmental Sciences, 2010, 19(6): 1278-1283.
    [7]
    HASENAUER H, PETRITSCH R, ZHAO M S, et al. Reconciling satellite with ground data to estimate forest productivity at national scales [J]. Forest Ecology and Management, 2012, 276:196-208.
    [8]
    CHAPIN III F, WOODWELL G, RANDERSON J T, et al. Reconciling carbon-cycle concepts, terminology, and methods [J]. Ecosystems, 2006, 9(7): 1041-1050.
    [8]
    JIANG Y L, ZHOU G S. Carbon equilibrium in Larix gmelinii forest and impact of global change [J]. Chinese Journal of Applied Ecology, 2001, 12(4): 481-484.
    [9]
    ZHAO G S, WANG J B, FAN W Y, et al. Vegetation net primary productivity in Northeast China in 2000-2008: simulation and seasonal change[J]. Chinese Journal of Applied Ecology, 2011, 22(3): 621-630.
    [9]
    FANG J Y, PIAO S L, FIELD C B, et al. Increasing net primary production in China from 1982 to 1999 [J]. Frontiers in Ecology and the Environment, 2003, 1(6): 293-297.
    [10]
    WHITE M A, THORNTON P E, RUNNING S W, et al. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls [J]. Earth Interactions, 2000, 4(3): 1-85.
    [10]
    YANG J Y, ZHAO H X, WANG C K. Response of forests to nitrogen saturation [J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(4): 507-511.
    [11]
    RUNNING S W, HUNT E R. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models [C]∥EHLERINGER J R, FIELD C B. Scaling physiological processes: leaf to globe. SanDiego: Academic Press, 1993: 141-158.
    [11]
    PENG J J, HE X Y, CHEN Z J, et al. Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2: a simulation based on BOME-BGC model and tree-ring data[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1733-1742.
    [12]
    WANG X Y, MA L Y, JIA Z K, et al. Root inclusion net method: novel approach to determine fine root production and turnover in Larix principis-rupprechtii Mayr plantation in North China [J]. Turkish Journal of Agriculture and Forestry, 2014, 38(3): 388-398.
    [13]
    HAVRANEK W. Gas exchange and dry matter allocation in larch at the alpine timberline on Mount Patscherkofel [C]∥TURNER H, TRANQUILLINI W. Establishment and tending of subalpine forest: research and management. Berichte: IUFRO Workshop, 1985: 135-142.
    [14]
    KLOEPPEL B D, GOWER S T, TREICHEL I W, et al. Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: a global comparison [J]. Oecologia, 1998, 114(2): 153-159.
    [15]
    NAMBIAR E S. Do nutrients retranslocate from fine roots? [J]. Canadian Journal of Forest Research, 1987, 17(8): 913-918.
    [16]
    ALLISON F, MURPHY R, KLEIN C. Nitrogen requirements for the decomposition of various kinds of finely ground woods in soil [J]. Soil Science, 1963, 96(3): 187-190.
    [17]
    ABER J D, MELILLO J M, MCCLAUGHERTY C A. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems [J]. Canadian Journal of Botany, 1990, 68(10): 2201-2208.
    [18]
    WIESER G. Evaluation of the impact of ozone on conifers in the Alps: a case study on spruce, pine and larch in the Austrian Alps [J]. Phyton Horn, 1999, 39(4): 241-252.
    [19]
    气候变化国家评估报告编委会. 气候变化国家评估报告[M]. 北京: 科学出版社, 2007: 149.
    [20]
    范敏锐. 北京山区森林生态系统净初级生产力对气候变化的响应[D]. 北京:北京林业大学, 2011.
    [21]
    朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413-424.
    [22]
    ZHANG Y J, ZHOU G S. Exploring the effects of water on vegetation change and net primary productivity along the IGBP Northeast China transect [J]. Environmental Earth Sciences, 2011, 62(7): 1481-1490.
    [23]
    刘国华, 傅伯杰. 全球气候变化对森林生态系统的影响[J]. 自然资源学报, 2001, 16(1): 71-78.
    [24]
    于贵瑞, 温学发, 李庆康, 等. 中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征[J]. 中国科学: D辑 地球科学, 2004, 34(增刊Ⅱ): 84-94.
    [25]
    范敏锐, 余新晓, 张振明, 等. CO2倍增和气候变化对北京山区栓皮栎林NPP影响研究[J]. 生态环境学报, 2010, 19(6): 1278-1283.
    [26]
    KEYSER A R, KIMBALL J, NEMANI R, et al. Simulating the effects of climate change on the carbon balance of North American high latitude forests [J]. Global Change Biology, 2000, 6(Suppl.1): 185-195.
    [27]
    蒋延玲, 周广胜. 兴安落叶松林碳平衡和全球变化影响研究[J]. 应用生态学报, 2001, 12(4): 481-484.
    [28]
    赵国帅, 王军邦, 范文义, 等. 2000—2008年中国东北地区植被净初级生产力的模拟及季节变化[J]. 应用生态学报, 2011, 22(3): 621-630.
    [29]
    KNORR W, PRENTICE I, HOUSE J, et al. Long-term sensitivity of soil carbon turnover to warming [J]. Nature, 2005, 433(7023): 298-301.
    [30]
    杨金艳, 赵惠勋, 王传宽. 森林对氮饱和的响应[J]. 应用与环境生物学报, 2004, 10(4): 507-511.
    [31]
    SCHIMEL D S, BRASWELL B, MCKEOWN R, et al. Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling [J]. Global Biogeochemical Cycles, 1996, 10(4): 677-692.
    [32]
    彭俊杰,何兴元,陈振举,等. 华北地区油松林生态系统对气候变化和CO2浓度升高的响应:基于BIOME-BGC模型和树木年轮的模拟[J]. 应用生态学报, 2012, 23(7): 1733-1742.
    [33]
    CHURKINA G, RUNNING S W. Contrasting climatic controls on the estimated productivity of global terrestrial biomes [J]. Ecosystems, 1998, 1(2): 206-215.
    [34]
    ZAK D R, PREGITZER K S, CURTIS P S, et al. Atmospheric CO2, soil-N availability, and allocation of biomass and nitrogen by Populus tremuloides [J]. Ecological Applications, 2000, 10(1): 34-46.
  • Related Articles

    [1]Liu Yang, Wang Hesong. Effects of climate change on distribution of suitable area of Pinus tabuliformis plantation in China[J]. Journal of Beijing Forestry University, 2024, 46(6): 82-92. DOI: 10.12171/j.1000-1522.20230072
    [2]Wei Yugui, Peng Wanyu, Qiu Yingqing, Feng Wenzhong, Bai Tianjun, Ye Qing, Deng Wenping. Response of water use efficiency of Cryptomeria japonica to climate change in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 48-57. DOI: 10.12171/j.1000-1522.20220279
    [3]Chen Meilin, Han Hairong. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 21-33. DOI: 10.12171/j.1000-1522.20220138
    [4]Li Xiarong, Chen Yixin, Chen Jingfei, Zhu Jiyou, Sun Guangpeng, Wei Liuduan, Zhang Xinna, Xu Chengyang. Comparative study on the effects of climate change on radial growth of Pinus tabuliformis in near and outer suburbs of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(1): 19-28. DOI: 10.12171/j.1000-1522.20200329
    [5]Feng Yuan, Xiao Wenfa, Zhu Jianhua, Huang Zhilin, Yan Xuxin, Wu Dong. Effects of stand age and climate change on the volume of Pinus massoniana forests in the Three Gorges Reservoir Area of central China[J]. Journal of Beijing Forestry University, 2019, 41(11): 11-21. DOI: 10.13332/j.1000-1522.20190184
    [6]Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 69-77. DOI: 10.13332/j.1000-1522.20190001
    [7]Liu Zhengcai, Qu Yaoyao. Vegetation change and its response to climate change based on SPOT-VGT in Hunan Province of southern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 80-87. DOI: 10.13332/j.1000-1522.20180278
    [8]Liu Ming, Zhang Deshun. Adaptability of landscape tree species response to climate change in Shanghai within the past 55 years[J]. Journal of Beijing Forestry University, 2018, 40(9): 107-117. DOI: 10.13332/j.1000-1522.20180113
    [9]CHEN Feng, LIN Xiang-dong, NIU Shu-kui, WANG San1, LI De, . Influence of climate change on forest fire in Yunnan Province, southwestern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 7-15.
    [10]HUO Chang-fu, CHENG Gen-wei, LU Xu-yang, FAN Ji-hui, XIAO Fei-peng. Dynamic simulation of climate change impacts on forest primary succession in Gongga Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2010, 32(1): 1-6.
  • Cited by

    Periodical cited type(13)

    1. 王云霓,代海燕,海龙,李佳陶,师鹏飞. 华北落叶松人工林净初级生产力对气象因子的响应. 林业资源管理. 2022(03): 67-72 .
    2. 具琳静,欧阳勋志,潘萍,刘军,周巧晴,叶青龙. 2000—2019年赣南森林净初级生产力时空变化及其与气候因子的关系. 东北林业大学学报. 2022(12): 37-44 .
    3. 王修信,王培娟,孙涛,汤谷云,朱启疆. 漓江上游水源林地区植被净初级生产力的时空变化. 应用基础与工程科学学报. 2021(04): 846-858 .
    4. 吕晓敏,周广胜. 中国生态与农业气象研究进展. 气象科技进展. 2021(03): 119-125 .
    5. 徐雨晴,肖风劲,於琍. 中国森林生态系统净初级生产力时空分布及其对气候变化的响应研究综述. 生态学报. 2020(14): 4710-4723 .
    6. 张慧东,霍常富,颜廷武,魏文俊,尤文忠. 辽东山区落叶松人工林生态系统碳通量及对气候变化的响应. 西南林业大学学报(自然科学). 2020(06): 40-47 .
    7. Wen-Qiang Gao,Xiang-Dong Lei,Li-Yong Fu. Impacts of climate change on the potential forest productivity based on a climate-driven biophysical model in northeastern China. Journal of Forestry Research. 2020(06): 2273-2286 .
    8. 康满春,朱丽平,许行,查同刚,张志强. 基于Biome-BGC模型的北方杨树人工林碳水通量对气候变化的响应研究. 生态学报. 2019(07): 2378-2390 .
    9. 张越,刘康,张红娟,张丹丹,陈慕亚. 基于BIOME-BGC模型的秦岭北坡太白红杉林碳源/汇动态和趋势研究. 热带亚热带植物学报. 2019(03): 235-249 .
    10. 解雅麟,王海燕,雷相东. 基于3-PG模型的长白落叶松人工林生长和生物量模拟. 南京林业大学学报(自然科学版). 2018(01): 141-148 .
    11. 李书恒,侯丽,史阿荣,陈兰,朱显亮,白红英. 基于Biome-BGC模型及树木年轮的太白红杉林生态系统对气候变化的响应研究. 生态学报. 2018(20): 7435-7446 .
    12. 郑磊,宋世凯,袁秀亮,董嘉琪,李龙辉. 基于Biome-BGC模型和集合卡尔曼滤波方法的阔叶红松林生态系统水碳通量模拟. 生态学杂志. 2017(06): 1752-1760 .
    13. 马良,朱再春,曾辉. NPP评估过程模型应用研究进展. 中国沙漠. 2017(06): 1250-1260 .

    Other cited types(20)

Catalog

    Article views (1668) PDF downloads (45) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return