• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Hui, HE Kang-ning, XU Te, LIU Yu-juan, LIU Ying, ZHANG Xue. Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(8): 1-7. DOI: 10.13332/j.1000-1522.20140457
Citation: WANG Hui, HE Kang-ning, XU Te, LIU Yu-juan, LIU Ying, ZHANG Xue. Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(8): 1-7. DOI: 10.13332/j.1000-1522.20140457

Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China

More Information
  • Received Date: December 09, 2014
  • Revised Date: December 09, 2014
  • Published Date: August 30, 2015
  • The aim of this study was to explain the response of canopy conductance of sea buckthorn (Hippophae rhamnoides ) to different environmental conditions so as to evaluate the feasibility of application of Jarvis model in sea buckthorn at the canopy scale. By using Granier's thermal dissipation probe, the sap flow of sea buckthorn in Qaidam Basin in Qinghai Province,northwestern China was continuously measured,and as well,the environmental factors such as incoming solar radiation intensity (Rs), air temperature (T), relative humidity (RH), wind speed (u) and rainfall were synchronically measured.Based on sap flow, canopy conductance (gc) was continuously simulated by back-calculated Penman-Monteith model. By analysis of gc of sea buckthorn, Jarvis stomatal model was simulated and analyzed with cross-validation. The results indicated that the diurnal variation in canopy conductance of sea buckthorn showed a single-peaked curve. There was a negative logarithm relationship between canopy conductance and vapor pressure deficit (VPD) under different radiation conditions. And the canopy conductance had a positive relationship with solar radiation intensity. The three variables, VPD, T and Rs, explained 81% of the variation in conductance in Jarvis-type mode, with the lowest average relative error of only 11.01%. And the degree of the environmental factors affecting the simulation accuracy of the model is ranked as VPD>Rs>T.
  • [1]
    TANG J W,BOLSTAD P V,EWERS B E, et al. Sap flux: up scaled canopy transpiration,stomatal conductance,and water use efficiency in an old growth forest in the Great Lakes region[J]. Journal of Geophysical Research,2006,111(2): 1-12.
    [1]
    HE K N, TIAN Y, ZHANG G C.Modeling of the daily transpiration variation in locust forest by Penman-Monteith equation [J]. Acta Ecologica Sinica, 2003, 23(2): 251-258.
    [2]
    SHEN Z X, XU L H,WANG Y H,et al. Characteristics of sap flow and water use of Hippophae rhamnoides community in Liupan Mountains,Ningxia [J]. Science of Soil and Water Conservation,2014, 12(3): 59-65.
    [2]
    PATAKI D E,OREN R,KATUL G,et al. Canopy conductance of Pinus taeda , Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions[J]. Tree Physiology,1998,18(5): 307-315.
    [3]
    EWERS B E,GOWER S T,BOND-LAMBERTY B,et al. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests[J]. Plant,Cell and Environment,2005,28(5): 660-678.
    [3]
    YU H B, YANG J,ZANG C X, et al. Diurnal variation of Hippophae rhamnoides L. subsp. sinensis Rousi stem sap flow in Huangfuchuan Basin and related environmental factors [J]. Chinese Journal of Ecology, 2008, 27(7): 1071-1076.
    [4]
    贺康宁,田阳,张光灿. 刺槐日蒸腾过程的Penman-Monteith方程模拟[J]. 生态学报, 2003, 23(2): 251-258.
    [4]
    YU H B, YANG J, XU Y D. Mathematical model of stem sap flow flux for Hippophae rhamnoides L. subsp. sinensis Rousi in Huangfuchuan Basin [J]. Research of Soil and Water Conservation, 2009, 16(1):162-166.
    [5]
    ALVES I, PERRIER A, PEREIRA L S.Aerodynamic and surface resistances of complete cover crops: how good is the ‘big leaf'?[J]. Transactions of the ASAE, 1998, 41(2): 345-351.
    [5]
    RUAN C J,LI D Q. Study on the transpiration of artificial Hippophae rhamnoides L.forest in the loess hilly region [J]. Acta Ecologica Sinica, 2001, 21(12):2141-2146.
    [6]
    XU W T, ZHAO P, WANG Q, et al. Calculation and modeling of the canopy stomatal conductance of Acacia mangium from sap flow data [J]. Acta Ecologica Sinica, 2007, 27(10): 4122-4130.
    [6]
    GRANIER A, HUC R, BARIGAH S T.Transpiration of natural rain forest and its dependence on climatic factors[J]. Agricultural and Forest Meteorology, 1996, 78(1-2): 19-29.
    [7]
    TRAMBOUZ W, BERTUZZI P, VOLTZ M.Comparison ofmethods for estimating actual evapotranspiration in a row cropped vineyard[J]. Agricultural and Forest Meteorology, 1998, 91(3-4): 193-208.
    [7]
    XIA Y Q, SHAO M A. The sap flow dynamics of Caragana korshinskff and the influence of environmental factors in semi-arid region of the Loess Plateau [J]. Acta Ecologica Sinica, 2008, 28(4): 1336-1382.
    [8]
    MAGNANI F,LEONARDI S,TOGNETTI R,et al. Modelling the surface conductance of a broad-leaved canopy: effect of partial decoupling from atmosphere[J]. Plant,Cell and Environment,1998,21(8): 867-879.
    [8]
    HAN L. Characteristics and modeling of canopy transpiration of main tree species in semi-arid region of Chinese Loess Plateau[D].Beijing:Beijing Forestry University, 2011.
    [9]
    GRANIER A,LOUSTAU D,BRÉDA N. A generic model of forest canopy conductance dependent on climate,soil water availability and leaf area index[J]. Annals of Forest Science,2000,57(8): 755-765.
    [10]
    GARCA-SANTOS G,BRUIJNZEEL L A,DOLMAN A J. Modelling canopy conductance under wet and dry conditions in a subtropical cloud forest[J]. Agricultural and Forest Meteorology,2009,149(10): 1565-1572.
    [11]
    NICOLÁS E,BARRADAS V L,ORTUO M F,et al. Environmental and stomatal control of transpiration,canopy conductance and decoupling coefficient in young lemon trees under shading net[J]. Environmental and Experimental Botany,2008,63(1-3): 200-206.
    [12]
    TESTI L,ORGAZ F,VILLALOBOS F J. Variations in bulk canopy conductance of an irrigated olive ( Olea europaea L.) orchard[J]. Environmental and Experimental Botany,2006,55(1-2): 15-28.
    [13]
    BERNIER P Y,BARTLETT P,BLACK T A,et al. Drought constraints on transpiration and canopy conductance inmature aspen and jack pine stands[J]. Agricultural and Forest Meteorology,2006, 140(1-4): 64-78.
    [14]
    KOMATSU H,KANG Y,KUME T,et al. Transpiration from a Cryptomeria japonica plantation(II): responses of canopy conductance tometeorological factors [J]. Hydrological Processes,2006,20(6): 1321-1334.
    [15]
    沈振西,徐丽宏,王彦辉,等. 宁夏六盘山沙棘液流变化及耗水特性[J]. 中国水土保持科学,2014, 12(3): 59-65.
    [16]
    于红博,杨劫,藏春鑫,等. 皇甫川流域中国沙棘树干液流日变化及其相关因子[J]. 生态学杂志, 2008, 27(7): 1071-1076.
    [17]
    于红博,杨劫,徐延达,等. 皇甫川流域中国沙棘的树干液流量数学模型[J]. 水土保持研究, 2009, 16(1):162-166.
    [18]
    阮成江,李代琼. 黄土丘陵区人工沙棘蒸腾作用研究[J]. 生态学报, 2001, 21(12):2141-2146.
    [19]
    许文滔,赵平,王权,等. 基于树干液流测定值的马占相思( Acacia mangium )冠层气孔导度计算及数值模拟[J]. 生态学报. 2007, 27(10): 4122-4130.
    [20]
    夏永秋,邵明安. 黄土高原半干旱区柠条( Caragana korshinaskii )树干液流动态及其影响因子[J]. 生态学报. 2008, 28(4): 1336-1382.
    [21]
    IRMAK S, MUTIIBWA D, IRMAK A, et al. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density[J]. Agricultural and Forest Meteorology, 2008, 148(6-7): 1034-1044.
    [22]
    MONTEITH J L,UNSWORTH M H. Principles of environmental physics[M]. London: Edward Arnold Press,1990.
    [23]
    BOSVELD F C, BOUTEN W. Evaluation of transpiration models with observations over a Douglas-fir forest[J]. Agricultural and Forest Meteorology, 2001, 108(4): 247-264.
    [24]
    OGUNTUNDE P G, VAN DE GIESEN N, SAVENIJE H H G. Measurement and modelling of transpiration of a rain-fed citrus orchard under subhumid tropical conditions[J]. Agricultural Water Management, 2007, 87(2): 200-208.
    [25]
    JARVIS P G. The interpretation of the variations in water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transpirations of the Royal Society of London B, 1976, 273(927): 596-610.
    [26]
    STEWART J B. Modeling surface conductance of pine forest[J]. Agriculture and Forest Meteorology, 1988, 43(1): 19-35.
    [27]
    MARQUARDT D W. An algorithm for least square estimation of non-linear parameters[J]. Appl Math, 1963, 11(2): 441-443.
    [28]
    韩磊. 黄土半干旱区主要造林树种蒸腾耗水及冠层蒸腾模拟研究[D]. 北京:北京林业大学,2011.
    [29]
    KUMAGAI T, SAITOH T M, SATO Y, et al. Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak[J]. J Hydrol, 2004, 287(1-4): 237-251.
    [30]
    WALLACE J, MCJANNET D. Processes controlling transpiration in the rainforests of north Queensland[J]. J Hydrol, 2010, 384(1-2): 107-117.
    [31]
    CHEN L, ZHANG Z, LI Z, et al. Biophysical control of whole tree transpiration under an urban environment in Northern China[J]. J Hydrol, 2011, 402(3-4): 388-400.
    [32]
    DAVID T, FERREIRA M, COHEN S, et al. Constraints on transpiration from an evergreen oak tree in southern Portugal[J]. Agricultural and Forest Meteorology, 2004, 122(3-4): 193-205.
  • Cited by

    Periodical cited type(7)

    1. 魏安琪,魏天兴,刘海燕,王莎. 黄土区刺槐和油松人工林土壤微生物PLFA分析. 北京林业大学学报. 2019(04): 88-98 . 本站查看
    2. 李鹏飞,张兴昌,郝明德,崔勇兴,张燕江,朱世雷. 植被恢复对黄土高原矿区重构土壤理化性质、酶活性以及真菌群落的影响. 水土保持通报. 2019(05): 1-7 .
    3. 陆梅,孙向阳,田昆,任玉连,王邵军,王行,彭淑娴. 纳帕海高原湿地不同退化阶段土壤真菌群落结构特征. 北京林业大学学报. 2018(03): 55-65 . 本站查看
    4. 张蓉,于亚军. 煤矸山复垦林地和草地土壤微生物多样性和群落组成的差异及其影响因素. 生态学杂志. 2018(06): 1662-1668 .
    5. 张树萌,黄懿梅,倪银霞,钟祺琪. 宁南山区人工林草对土壤真菌群落的影响. 中国环境科学. 2018(04): 1449-1458 .
    6. 李敏敏,魏天兴,李信良,葛海潮. 黄土区蔡家川流域刺槐人工林林下物种多样性. 浙江农林大学学报. 2018(02): 227-234 .
    7. 刘洋,曾全超,黄懿梅. 基于454高通量测序的黄土高原不同乔木林土壤细菌群落特征. 中国环境科学. 2016(11): 3487-3494 .

    Other cited types(9)

Catalog

    Article views (1477) PDF downloads (28) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return