• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Hui, HE Kang-ning, XU Te, LIU Yu-juan, LIU Ying, ZHANG Xue. Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(8): 1-7. DOI: 10.13332/j.1000-1522.20140457
Citation: WANG Hui, HE Kang-ning, XU Te, LIU Yu-juan, LIU Ying, ZHANG Xue. Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(8): 1-7. DOI: 10.13332/j.1000-1522.20140457

Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China

More Information
  • Received Date: December 09, 2014
  • Revised Date: December 09, 2014
  • Published Date: August 30, 2015
  • The aim of this study was to explain the response of canopy conductance of sea buckthorn (Hippophae rhamnoides ) to different environmental conditions so as to evaluate the feasibility of application of Jarvis model in sea buckthorn at the canopy scale. By using Granier's thermal dissipation probe, the sap flow of sea buckthorn in Qaidam Basin in Qinghai Province,northwestern China was continuously measured,and as well,the environmental factors such as incoming solar radiation intensity (Rs), air temperature (T), relative humidity (RH), wind speed (u) and rainfall were synchronically measured.Based on sap flow, canopy conductance (gc) was continuously simulated by back-calculated Penman-Monteith model. By analysis of gc of sea buckthorn, Jarvis stomatal model was simulated and analyzed with cross-validation. The results indicated that the diurnal variation in canopy conductance of sea buckthorn showed a single-peaked curve. There was a negative logarithm relationship between canopy conductance and vapor pressure deficit (VPD) under different radiation conditions. And the canopy conductance had a positive relationship with solar radiation intensity. The three variables, VPD, T and Rs, explained 81% of the variation in conductance in Jarvis-type mode, with the lowest average relative error of only 11.01%. And the degree of the environmental factors affecting the simulation accuracy of the model is ranked as VPD>Rs>T.
  • [1]
    TANG J W,BOLSTAD P V,EWERS B E, et al. Sap flux: up scaled canopy transpiration,stomatal conductance,and water use efficiency in an old growth forest in the Great Lakes region[J]. Journal of Geophysical Research,2006,111(2): 1-12.
    [1]
    HE K N, TIAN Y, ZHANG G C.Modeling of the daily transpiration variation in locust forest by Penman-Monteith equation [J]. Acta Ecologica Sinica, 2003, 23(2): 251-258.
    [2]
    SHEN Z X, XU L H,WANG Y H,et al. Characteristics of sap flow and water use of Hippophae rhamnoides community in Liupan Mountains,Ningxia [J]. Science of Soil and Water Conservation,2014, 12(3): 59-65.
    [2]
    PATAKI D E,OREN R,KATUL G,et al. Canopy conductance of Pinus taeda , Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions[J]. Tree Physiology,1998,18(5): 307-315.
    [3]
    EWERS B E,GOWER S T,BOND-LAMBERTY B,et al. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests[J]. Plant,Cell and Environment,2005,28(5): 660-678.
    [3]
    YU H B, YANG J,ZANG C X, et al. Diurnal variation of Hippophae rhamnoides L. subsp. sinensis Rousi stem sap flow in Huangfuchuan Basin and related environmental factors [J]. Chinese Journal of Ecology, 2008, 27(7): 1071-1076.
    [4]
    贺康宁,田阳,张光灿. 刺槐日蒸腾过程的Penman-Monteith方程模拟[J]. 生态学报, 2003, 23(2): 251-258.
    [4]
    YU H B, YANG J, XU Y D. Mathematical model of stem sap flow flux for Hippophae rhamnoides L. subsp. sinensis Rousi in Huangfuchuan Basin [J]. Research of Soil and Water Conservation, 2009, 16(1):162-166.
    [5]
    ALVES I, PERRIER A, PEREIRA L S.Aerodynamic and surface resistances of complete cover crops: how good is the ‘big leaf'?[J]. Transactions of the ASAE, 1998, 41(2): 345-351.
    [5]
    RUAN C J,LI D Q. Study on the transpiration of artificial Hippophae rhamnoides L.forest in the loess hilly region [J]. Acta Ecologica Sinica, 2001, 21(12):2141-2146.
    [6]
    XU W T, ZHAO P, WANG Q, et al. Calculation and modeling of the canopy stomatal conductance of Acacia mangium from sap flow data [J]. Acta Ecologica Sinica, 2007, 27(10): 4122-4130.
    [6]
    GRANIER A, HUC R, BARIGAH S T.Transpiration of natural rain forest and its dependence on climatic factors[J]. Agricultural and Forest Meteorology, 1996, 78(1-2): 19-29.
    [7]
    TRAMBOUZ W, BERTUZZI P, VOLTZ M.Comparison ofmethods for estimating actual evapotranspiration in a row cropped vineyard[J]. Agricultural and Forest Meteorology, 1998, 91(3-4): 193-208.
    [7]
    XIA Y Q, SHAO M A. The sap flow dynamics of Caragana korshinskff and the influence of environmental factors in semi-arid region of the Loess Plateau [J]. Acta Ecologica Sinica, 2008, 28(4): 1336-1382.
    [8]
    MAGNANI F,LEONARDI S,TOGNETTI R,et al. Modelling the surface conductance of a broad-leaved canopy: effect of partial decoupling from atmosphere[J]. Plant,Cell and Environment,1998,21(8): 867-879.
    [8]
    HAN L. Characteristics and modeling of canopy transpiration of main tree species in semi-arid region of Chinese Loess Plateau[D].Beijing:Beijing Forestry University, 2011.
    [9]
    GRANIER A,LOUSTAU D,BRÉDA N. A generic model of forest canopy conductance dependent on climate,soil water availability and leaf area index[J]. Annals of Forest Science,2000,57(8): 755-765.
    [10]
    GARCA-SANTOS G,BRUIJNZEEL L A,DOLMAN A J. Modelling canopy conductance under wet and dry conditions in a subtropical cloud forest[J]. Agricultural and Forest Meteorology,2009,149(10): 1565-1572.
    [11]
    NICOLÁS E,BARRADAS V L,ORTUO M F,et al. Environmental and stomatal control of transpiration,canopy conductance and decoupling coefficient in young lemon trees under shading net[J]. Environmental and Experimental Botany,2008,63(1-3): 200-206.
    [12]
    TESTI L,ORGAZ F,VILLALOBOS F J. Variations in bulk canopy conductance of an irrigated olive ( Olea europaea L.) orchard[J]. Environmental and Experimental Botany,2006,55(1-2): 15-28.
    [13]
    BERNIER P Y,BARTLETT P,BLACK T A,et al. Drought constraints on transpiration and canopy conductance inmature aspen and jack pine stands[J]. Agricultural and Forest Meteorology,2006, 140(1-4): 64-78.
    [14]
    KOMATSU H,KANG Y,KUME T,et al. Transpiration from a Cryptomeria japonica plantation(II): responses of canopy conductance tometeorological factors [J]. Hydrological Processes,2006,20(6): 1321-1334.
    [15]
    沈振西,徐丽宏,王彦辉,等. 宁夏六盘山沙棘液流变化及耗水特性[J]. 中国水土保持科学,2014, 12(3): 59-65.
    [16]
    于红博,杨劫,藏春鑫,等. 皇甫川流域中国沙棘树干液流日变化及其相关因子[J]. 生态学杂志, 2008, 27(7): 1071-1076.
    [17]
    于红博,杨劫,徐延达,等. 皇甫川流域中国沙棘的树干液流量数学模型[J]. 水土保持研究, 2009, 16(1):162-166.
    [18]
    阮成江,李代琼. 黄土丘陵区人工沙棘蒸腾作用研究[J]. 生态学报, 2001, 21(12):2141-2146.
    [19]
    许文滔,赵平,王权,等. 基于树干液流测定值的马占相思( Acacia mangium )冠层气孔导度计算及数值模拟[J]. 生态学报. 2007, 27(10): 4122-4130.
    [20]
    夏永秋,邵明安. 黄土高原半干旱区柠条( Caragana korshinaskii )树干液流动态及其影响因子[J]. 生态学报. 2008, 28(4): 1336-1382.
    [21]
    IRMAK S, MUTIIBWA D, IRMAK A, et al. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density[J]. Agricultural and Forest Meteorology, 2008, 148(6-7): 1034-1044.
    [22]
    MONTEITH J L,UNSWORTH M H. Principles of environmental physics[M]. London: Edward Arnold Press,1990.
    [23]
    BOSVELD F C, BOUTEN W. Evaluation of transpiration models with observations over a Douglas-fir forest[J]. Agricultural and Forest Meteorology, 2001, 108(4): 247-264.
    [24]
    OGUNTUNDE P G, VAN DE GIESEN N, SAVENIJE H H G. Measurement and modelling of transpiration of a rain-fed citrus orchard under subhumid tropical conditions[J]. Agricultural Water Management, 2007, 87(2): 200-208.
    [25]
    JARVIS P G. The interpretation of the variations in water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transpirations of the Royal Society of London B, 1976, 273(927): 596-610.
    [26]
    STEWART J B. Modeling surface conductance of pine forest[J]. Agriculture and Forest Meteorology, 1988, 43(1): 19-35.
    [27]
    MARQUARDT D W. An algorithm for least square estimation of non-linear parameters[J]. Appl Math, 1963, 11(2): 441-443.
    [28]
    韩磊. 黄土半干旱区主要造林树种蒸腾耗水及冠层蒸腾模拟研究[D]. 北京:北京林业大学,2011.
    [29]
    KUMAGAI T, SAITOH T M, SATO Y, et al. Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak[J]. J Hydrol, 2004, 287(1-4): 237-251.
    [30]
    WALLACE J, MCJANNET D. Processes controlling transpiration in the rainforests of north Queensland[J]. J Hydrol, 2010, 384(1-2): 107-117.
    [31]
    CHEN L, ZHANG Z, LI Z, et al. Biophysical control of whole tree transpiration under an urban environment in Northern China[J]. J Hydrol, 2011, 402(3-4): 388-400.
    [32]
    DAVID T, FERREIRA M, COHEN S, et al. Constraints on transpiration from an evergreen oak tree in southern Portugal[J]. Agricultural and Forest Meteorology, 2004, 122(3-4): 193-205.
  • Cited by

    Periodical cited type(16)

    1. 张少杰,李珊芝,肖铁桥,马东方. 垂直绿化对老旧小区热舒适影响的数值模拟研究. 青岛理工大学学报. 2025(01): 62-71 .
    2. 李江波,翟志宏,李海燕,邓燕,陈思豪,王忆娴,丁云飞. 广州地区典型绿化乔木降温增湿效应研究. 气候与环境研究. 2024(01): 13-24 .
    3. 张鑫,蔡籽焓,黄晓光. 街头乔木景观结构的微气候效应数值仿真. 计算机仿真. 2023(01): 528-532 .
    4. 翁佳烽,梁晓媛,李婷苑,黄扬东,朱文生. 基于ENVI-met的广州街区温湿环境模拟. 广东气象. 2023(04): 1-5 .
    5. 董冬,邰宇,罗毅,张五四,顾康康. 植被配置结构对人体热舒适度影响的数值模拟研究. 环境与职业医学. 2023(08): 900-909 .
    6. 田菁,陈琳涵,张玉环,赵群,刘云. 基于ENVI-met模拟冷岛效应指标及差异性分析. 北京农学院学报. 2023(04): 105-109 .
    7. 杨鸿玮,陈子瑜,席晖. 基于热舒适评价的口袋公园绿化结构设计决策研究——以夏热冬冷地区某公园为例. 建筑科学. 2023(10): 210-221 .
    8. 潘剑彬,史川,黄田田,朱丹莉. 北京奥林匹克森林公园绿地人体感热舒适度空间差异特征. 风景园林. 2023(12): 114-120 .
    9. 祁娟娟,蔡芫镔,邱毅星,肖成明. 基于ENVI-met的冬季室外热环境缓解方案对比——以福州市中心城区为例. 环境生态学. 2022(01): 25-36 .
    10. 卢跃静,武新乾,王飞飞. 建筑因素对环境温度的显著影响分析. 环境与发展. 2022(04): 149-155+172 .
    11. 帅林茹,冯莉,阳少奇. 植被种植方式对城市微环境热舒适度影响的数值模拟研究. 生态学杂志. 2022(08): 1611-1618 .
    12. 张桂欣,刘祎,祝善友. 城市建筑布局要素对区域热环境影响的ENVI-met模拟与分析——以南京江北新区部分区域为例. 气候与环境研究. 2022(04): 513-522 .
    13. 李佳妮,朱丹莉,王娜,潘剑彬. 城市绿道植物群落空间人体热舒适度研究——以北京三山五园绿道为例. 北京建筑大学学报. 2022(06): 39-47 .
    14. 阿布力克木·托合提,朱礼同,王万江. 吐鲁番坎儿井公共空间热舒适度模拟研究. 西安建筑科技大学学报(自然科学版). 2021(05): 617-624 .
    15. 鲁凯莉,王爱霞,郭亚男,吕杨超. 半干旱区下沉式公园微气候特征与下垫面优化配置研究. 浙江林业科技. 2021(06): 50-58 .
    16. 范志强,徐佳敏,杨荣,葛文焱,丁元春. 安庆秦潭湖公园不同植物配置类型湿温效应研究. 佳木斯大学学报(自然科学版). 2021(06): 105-107 .

    Other cited types(28)

Catalog

    Article views (1477) PDF downloads (28) Cited by(44)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return