• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Ling, ZHAO Guang-liang, HUANG Jin. Microbial biomass and enzyme activity of the rhizosphere soil under different grafted Xanthoceras sorbifolia cultivars[J]. Journal of Beijing Forestry University, 2015, 37(8): 69-75. DOI: 10.13332/j.1000-1522.20150013
Citation: WANG Ling, ZHAO Guang-liang, HUANG Jin. Microbial biomass and enzyme activity of the rhizosphere soil under different grafted Xanthoceras sorbifolia cultivars[J]. Journal of Beijing Forestry University, 2015, 37(8): 69-75. DOI: 10.13332/j.1000-1522.20150013

Microbial biomass and enzyme activity of the rhizosphere soil under different grafted Xanthoceras sorbifolia cultivars

More Information
  • Received Date: January 15, 2015
  • Revised Date: January 15, 2015
  • Published Date: August 30, 2015
  • Xanthoceras sorbifolia is an important plant species for landscaping and energy use, but mostly grown in wild or semi-wild environment with low yield. Grafting can enhance crop yield and improve stress tolerance properties, and can also influence rhizosphere soil properties. Although lots of grafting techniques in X. sorbifolia have been reported so far, the impacts of grafting on soil properties have not been well documented. In order to understand whether grafting could improve soil biological properties or not, we assessed microbial biomasses and enzyme activities of rhizosphere soils under non-grafting and grafting treatments. X. sorbifolia scions of four different cultivars, i.e. wild white flower cultivar from Fuxin (LFB), Liaoning Province of northeastern China; wild white flower cultivar from Jianping (LJB), Liaoning Province; wild red flower cultivar from Chifeng (NCH), Inner Mongolia of northern China; and planted red flower seedling (NSH) from Inner Mongolia were grafted onto X. sorbifolia rootstock from Changping, Beijing, respectively. Compared with the non-grafted (CK) cultivar, the microbial biomass C of the rhizosphere soils under LFB, LJB, NCH and NSH were significantly increased by 62%,45%,91% and 40%, whereas the microbial biomass N of the rhizosphere soils under NCH, LFB and NSH were significantly increased by 140%, 107% and 56%, respectively. In contrast with CK, the activities of β-glucosidase, glucosaminidase, leucine amino peptidase and phosphatases of rhizosphere soils under NCH, LFB and NSH were significantly increased, whereas the activity of phenol oxidase was markedly decreased. A significantly positive relationship was observed between the change of activities of glucosidase, glucosaminidase as well as leucine amino peptidase and microbial biomass, dissolved soil carbon and dissolved organic soil nitrogen. In summary, the white-flowered scions from Fuxin, Liaoning and red-flowered ones from Chifeng, Inner Mongolia grafted onto the rootstock from Changping, Beijing could improve microbial biomass and enzyme activities of rhizosphere soils.
  • [1]
    马启慧.能源树种文冠果的研究现状与发展前景[J].北方园艺,2007(8):77-78.
    [1]
    MA Q H.The present status and perspectives of energy trees Xanthoceras sorbifolia [J]. Northern Horticulture, 2007(8):77-78.
    [2]
    GAO S M, MA K, DU X H, et al. Advances in research on Xanthoceras sorbifolia [J]. Chinese Bulletin of Botany, 2002,19(3): 296-301.
    [2]
    高述民,马凯,杜希华,等.文冠果( Xanthoceras sorbifolia )研究进展[J].植物学通报,2002,19(3): 296-301.
    [3]
    侯元凯,李阳元,赵生军,等.文冠果结实情况的调查与产量的预测[J].经济林研究,2011,29(1):144-148.
    [3]
    HOU Y K, LI Y Y, ZHAO S J, et al. Fructification investigation and yield prediction in Xanthoceras sorbifolia [J]. Nonwood Forest Research, 2011,29(1):144-148.
    [4]
    SCHWARZ D, ROUPHAEL Y, COLLA G , et al. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants[J]. Scientia Horticulturae, 2010, 127(2): 162-171.
    [4]
    SUN J S, LI S F, DONG C X, et al. Research progress and prospect of long distance transmission of RNA molecules in grafted plants[J]. Scientia Silvae Sinicae, 2014,50(11):158-165.
    [5]
    CHANG Y M, ZHANG C H. Grafting techniques in Xanthoceras sorbifolia [J]. Nonwood Forest Research, 2013,31(2): 154-156.
    [5]
    GILARDI G, GULLINO M L, GARIBALDI A. Critical aspects of grafting as a possible strategy to manage soil-borne pathogens[J]. Scientia Horticulturae, 2013, 149: 19-21.
    [6]
    HAN S X, PENG M X, LI D Y. Influence of different grafting methods on survival rate of Xanthoceras sorbifolia Bunge[J]. Horticulture & Seed, 2012(7):72-74.
    [6]
    孙敬爽,李少峰,董辰希,等.嫁接植物体中RNA 分子长距离传递研究进展[J].林业科学,2014,50(11):158-165.
    [7]
    WU Y L, JIAO J, CHANG L R, et al. Study on graft technology of Xanthoceras sorbifolia [J]. Northern Horticulture, 2011(23): 29-30.
    [7]
    常月梅,张彩红.文冠果嫁接繁殖技术[J].经济林研究,2013,31(2):154-156.
    [8]
    韩淑贤,彭明喜,李冬云.不同嫁接方法对文冠果嫁接成活率的影响[J].园艺与种苗,2012(7):72-74.
    [8]
    WEI M, ZHUGE Y P, LOU Y H, et al.Effects of fertilization on Xanthoceras sorbifolia Bunge growth and soil enzyme activities[J].Journal of Soil and Water Conservation, 2010,24(2): 237-240.
    [9]
    吴月亮,焦健,常立儒,等.文冠果嫁接技术研究[J].北方园艺, 2011(23):29-30.
    [9]
    ZHANG Y, GUO J P, ZHANG Y X. Advances in research on drop causes and retention techniques in Xanthoceras sorbifolia [J]. Nonwood Forest Research, 2012,30(4):180-184.
    [10]
    魏猛,诸葛玉平,娄燕宏,等.施肥对文冠果生长及土壤酶活性的影响[J].水土保持学报,2010,24(2): 237-240.
    [10]
    LIU B,WANG L H,YIN L M,et al. Growth and fruiting characteristics of two age Xanthoceras sorbifolia Bunge trees[J].Journal of the Graduate School of the Chinese Academy of Sciences,2011,28(1): 73-79.
    [11]
    LU R K. Standard soil agro-chemical analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000: 328-338.
    [11]
    张燕,郭晋平,张芸香.文冠果落花落果成因及保花保果技术研究进展[J].经济林研究,2012,30(4): 180-184.
    [12]
    刘波,王力华,阴黎明,等.两种林龄文冠果的生长和结实特性[J].中国科学院研究生院学报,2011,28(1):73-79.
    [12]
    WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38 (3): 298-310.
    [13]
    DONG Y, DONG K, ZHENG Y, et al. Allelopathic effects and components analysis of root exudates of faba bean cultivars with different degrees of resistance to Fusarium oxysporum [J]. Chinese Journal of Eco-Agriculture, 2014, 22(3): 292-299.
    [13]
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000: 328-338.
    [14]
    WU F Z, AN M J. Effects of watermelon cultivars with different resistances to Fusarium oxysporum f. sp. niveum and grafting on rhizosphere soil microorganism population and community structure[J]. Scientia Agricultura Sinica, 2011, 44(22): 4636-4644.
    [14]
    ZSOLNAY A. Dissolved organic matter (DOM): artefacts, definitions, and functions[J]. Geoderma, 2003, 113(3-4): 187-209.
    [15]
    YIN Y L, ZHOU B L, LI Y P, et al. Effects of grafting on eggplant seed germination and seedling growth and soil biological activity under continuous cropping[J]. Chinese Journal of Ecology, 2009, 28(4): 638-642.
    [15]
    SOWERBY A, EMMETT B, BEIER C, et al. Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations [J]. Soil Biology and Biochemistry, 2005,37(10): 1805-1813.
    [16]
    BROOKES P C, LANDMAN A, PRUDEN G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil [J]. Soil Biology and Biochemistry, 1985, 17(6):837-842.
    [16]
    LIU N, ZHU W M, LU B, et al.Effects of grafting on the soil micro-ecological environment of tomato rhizosphere[J]. Acta Agriculturae Shanghai, 2014,30(5):6-10.
    [17]
    XIE Y F, TIAN Y Q, LI S, et al. Effects of single-root-grafting and double-root-grafting on cucumber rhizosphere soil microorganism and enzyme activity[J]. China Vegetables, 2012(24):62-68.
    [17]
    VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biology & Biochemistry, 1987, 19(6):703-707.
    [18]
    SU Y B, LIN C, ZHANG F S, et al. Effect of arbuscular mycorrhiza fungi ( Glomus mosseae , Glomus versiformea , Gigaspora margarita and Gigaspora rosea ) on phosphatase activities and soil organic phosphate content in clover rhizosphere[J]. Soils, 2003, 35 (4): 334-338.
    [18]
    SINSABAUGH R L, KLUG M J, COLLINS H P, et al. Characterizing soil microbial communities[M]//ROBERTSON G P, COLEMAN D C, BLEDSOE C S, et al. Standard soil methods for long-term ecological research. New York: Oxford University Press, 1999: 328-335.
    [19]
    DICK R P. Methods of soil enzymology[M]. Madison: Soil Science Society of America, Inc, 2011:103-210.
    [19]
    LI M, WU F Z. Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber[J]. Chinese Journal of Applied Ecology,2014,25(12): 3556-3562.
    [20]
    KONG A H, GENG Y Q, YU X X. Soil enzyme activities under Quercus variabis and Pinus tabulaeformis forests in lower mountain area, Beijing[J].Soils, 2013, 45(2): 264-270.
    [20]
    ALLISON S D, VITOUSEK P M. Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition[J]. Biotropica, 2004, 36(3): 285-296.
    [21]
    BOWLES T M, ACOSTA-MARTINEZ V, CALDERON F, et al. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape [J]. Soil Biology and Biochemistry, 2014, 68: 252-262.
    [22]
    吴林坤,林向民,林文雄.根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J].植物生态学报,2014, 38 (3): 298-310.
    [23]
    董艳,董坤,郑毅,等.不同抗性蚕豆品种根系分泌物对枯萎病菌的化感作用及根系分泌物组分分析[J].中国生态农业学报,2014, 22(3): 292-299.
    [24]
    吴凤芝,安美君. 西瓜枯萎病抗性及其嫁接对根际土壤微生物数量及群落结构的影响[J].中国农业科学, 2011, 44(22): 4636-4644.
    [25]
    PATERSON E, GEBBING T, ABEL C, et al. Rhizodeposition shapes rhizosphere microbial community structure in organic soil[J]. New Phytologist, 2007, 173(3), 600-610.
    [26]
    LIU N, ZHOU B. Grafting eggplant onto tomato rootstock to suppress Verticillium dahliae infection: the effect of root exudates[J].HortScience, 2009, 44(7): 2058-2062.
    [27]
    CHEN S L, ZHOU B L, LIN S S, et al. Allelopathic effects of cinnamic acid and vanillin on soil microbes, soil enzymes activities and growth of grafted eggplants[J]. Allelopathy Journal, 2011, 28(1): 29-40.
    [28]
    尹玉玲,周宝利,李云鹏,等.嫁接对茄子连作土壤生物活性及种子萌发和幼苗生长的影响[J].生态学杂志,2009,28(4): 638-642.
    [29]
    TIAN Y, ZHANG X, LIU J, et al. Microbial properties of rhizosphere soils as affected by rotation, grafting, and soil sterilization in intensive vegetable production systems[J]. Scientia Horticulturae, 2009, 123(2): 139-147.
    [30]
    刘娜,朱为民,鲁博,等.嫁接对番茄根际土壤微生态环境的影响[J].上海农业学报,2014,30(5):6-10.
    [31]
    谢远峰,田永强,李硕,等.黄瓜单砧与双砧嫁接对根际土壤微生物和酶活性的影响[J].中国蔬菜,2012(24):62-68.
    [32]
    RAIESI F, BEHESHTI A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran[J]. Applied Soil Ecology, 2014, 75: 63- 70.
    [33]
    TISCHER A, BLAGODATSKAYA E, HAMER U. Extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador affected by low soil P status and land-use change[J]. Applied Soil Ecology, 2014, 74: 1- 11.
    [34]
    BADRI D V, VIVANCO J M. Regulation and function of root exudates[J]. Plant Cell and Environment, 2009, 32(6): 666-681.
    [35]
    苏友波,林春,张福锁,等.不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响[J].土壤, 2003, 35(4): 334-338.
    [36]
    李敏,吴凤芝.不同填闲模式对黄瓜根际土壤酶活性及细菌群落的影响[J].应用生态学报,2014,25(12): 3556-3562.
    [37]
    孔爱辉,耿玉清,余新晓.北京低山区栓皮栎林和油松林土壤酶活性研究[J].土壤, 2013, 45(2): 264-270.
    [38]
    MCDANIEL M D, KAYE J P, KAYE M W. Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest[J]. Soil Biology and Biochemistry, 2013, 56(9): 90-98.
    [39]
    SHI W, DELL E, BOWMAN D, et al. Soil enzyme activities and organic matter composition in a turfgrass chronosequence[J]. Plant and Soil, 2006, 288(1-2): 285-296.
    [40]
    TIAN L, DELL E, SHI W. Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization[J].Applied Soil Ecology, 2010, 46(3): 426-435.
    [41]
    NG E L, PATTI A F, ROSE M T, et al. Does the chemical nature of soil carbon drive the structure and functioning of soil microbial communities?[J].Soil Biology and Biochemistry, 2014, 70:54-61.
  • Related Articles

    [1]Zhao Han, Wang Mingjie, He Linhan, Chen Yao, Gao Jianmin. Preparation and its electrochemical properties of enzymatically hydrolyzed wood-based hierarchical porous carbon[J]. Journal of Beijing Forestry University, 2024, 46(10): 136-143. DOI: 10.12171/j.1000-1522.20240026
    [2]Li Yucheng, Zhu Liyu, Zhao Jingyang, Zheng Dan, Qiu Mengjie, Liu Jing, Lei Jiandu. Synthesis of novel NaNi/C catalyst and selective hydrogenation study of furfural[J]. Journal of Beijing Forestry University, 2023, 45(1): 140-147. DOI: 10.12171/j.1000-1522.20220358
    [3]Cui Han, Hou Kexu, Jiang Weikun, Zhou Hao, Lü Gaojin. Preparation and its properties of sodium lignosulfonate@tannic acid hydrogel[J]. Journal of Beijing Forestry University, 2022, 44(5): 142-149. DOI: 10.12171/j.1000-1522.20210411
    [4]Liu Pengpeng, Zhou Sukun, Wang Chao, You Tingting, Xu Feng. Preparation and properties of mesoporous activated carbons from NaOH-pretreated corncob residues[J]. Journal of Beijing Forestry University, 2018, 40(3): 128-134. DOI: 10.13332/j.1000-1522.20170431
    [5]SUN Ya-jie, ZHAO Tian-qi, ZHANG Chun-lei, FU Yu-jie, LI Shu-jun, MA Yan-li. Adsorption properties of lignin-g-polyacrylic acid hydrogel on Pb2+, Cu2+, Cd2+[J]. Journal of Beijing Forestry University, 2017, 39(12): 102-111. DOI: 10.13332/j.1000-1522.20170309
    [6]LU Qi, MENG Yong-bin, XU Lei, ZHANG Zi-dong, LIU Ying, ZHANG Ying, ZU Yuan-gang.. Technology in preparation of ethanol from the enzymatic hydrolysate of Tara fiber residues.[J]. Journal of Beijing Forestry University, 2015, 37(12): 122-127. DOI: 10.13332/j.1000-1522.20150160
    [7]LIU Yan-hui, HOU Lian-xia, TIAN Jin-ling, REN Shi-xue.. Preparation and performance of hymexazol/lignin based amphoteric surfactant/bentonite slow-release formulation.[J]. Journal of Beijing Forestry University, 2015, 37(9): 101-110. DOI: 10.13332/j.1000-1522.20150142
    [8]AI Qing, SU Ling, ZHANG Qiong, FANG Gui-zhen. Preparation for porous titanium material with dimethylbutylsulfonated lignin ammonium as a template[J]. Journal of Beijing Forestry University, 2013, 35(2): 102-107.
    [9]WANG Chun-hai, LI Zhi-na, ZHAO Yin-feng, BEI Ying, REN Shi-xue, FANG Gui-zhen. Preparation of porous silicon oxide materials by lignin trimethyl quaternary ammonium salt as templates[J]. Journal of Beijing Forestry University, 2011, 33(4): 118-123.
    [10]MU Jun, YU Zhi-ming, LI Li, ZHOU Wen-rui. Preparation and analysis of wood vinegar with wood residues[J]. Journal of Beijing Forestry University, 2008, 30(2): 129-132.
  • Cited by

    Periodical cited type(3)

    1. 肖湘滇,管娇琼. 中药及其复方制剂对皮肤真菌抑菌活性的研究进展. 云南中医药大学学报. 2024(04): 98-105 .
    2. 徐元柳,刘迪迪,王兆丹,肖国生,唐华丽. 植物提取物抑菌机理及联合现代新兴技术在肉类保鲜中的应用进展. 食品与机械. 2024(11): 238-244 .
    3. 刘治廷,王忠娟,张秀娟,杨诗涵,张金山,陈小强,张莹. 马齿苋抑菌活性成分研究进展. 食品科学. 2023(19): 359-371 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return