• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Ling, ZHAO Guang-liang, HUANG Jin. Microbial biomass and enzyme activity of the rhizosphere soil under different grafted Xanthoceras sorbifolia cultivars[J]. Journal of Beijing Forestry University, 2015, 37(8): 69-75. DOI: 10.13332/j.1000-1522.20150013
Citation: WANG Ling, ZHAO Guang-liang, HUANG Jin. Microbial biomass and enzyme activity of the rhizosphere soil under different grafted Xanthoceras sorbifolia cultivars[J]. Journal of Beijing Forestry University, 2015, 37(8): 69-75. DOI: 10.13332/j.1000-1522.20150013

Microbial biomass and enzyme activity of the rhizosphere soil under different grafted Xanthoceras sorbifolia cultivars

More Information
  • Received Date: January 15, 2015
  • Revised Date: January 15, 2015
  • Published Date: August 30, 2015
  • Xanthoceras sorbifolia is an important plant species for landscaping and energy use, but mostly grown in wild or semi-wild environment with low yield. Grafting can enhance crop yield and improve stress tolerance properties, and can also influence rhizosphere soil properties. Although lots of grafting techniques in X. sorbifolia have been reported so far, the impacts of grafting on soil properties have not been well documented. In order to understand whether grafting could improve soil biological properties or not, we assessed microbial biomasses and enzyme activities of rhizosphere soils under non-grafting and grafting treatments. X. sorbifolia scions of four different cultivars, i.e. wild white flower cultivar from Fuxin (LFB), Liaoning Province of northeastern China; wild white flower cultivar from Jianping (LJB), Liaoning Province; wild red flower cultivar from Chifeng (NCH), Inner Mongolia of northern China; and planted red flower seedling (NSH) from Inner Mongolia were grafted onto X. sorbifolia rootstock from Changping, Beijing, respectively. Compared with the non-grafted (CK) cultivar, the microbial biomass C of the rhizosphere soils under LFB, LJB, NCH and NSH were significantly increased by 62%,45%,91% and 40%, whereas the microbial biomass N of the rhizosphere soils under NCH, LFB and NSH were significantly increased by 140%, 107% and 56%, respectively. In contrast with CK, the activities of β-glucosidase, glucosaminidase, leucine amino peptidase and phosphatases of rhizosphere soils under NCH, LFB and NSH were significantly increased, whereas the activity of phenol oxidase was markedly decreased. A significantly positive relationship was observed between the change of activities of glucosidase, glucosaminidase as well as leucine amino peptidase and microbial biomass, dissolved soil carbon and dissolved organic soil nitrogen. In summary, the white-flowered scions from Fuxin, Liaoning and red-flowered ones from Chifeng, Inner Mongolia grafted onto the rootstock from Changping, Beijing could improve microbial biomass and enzyme activities of rhizosphere soils.
  • [1]
    马启慧.能源树种文冠果的研究现状与发展前景[J].北方园艺,2007(8):77-78.
    [1]
    MA Q H.The present status and perspectives of energy trees Xanthoceras sorbifolia [J]. Northern Horticulture, 2007(8):77-78.
    [2]
    GAO S M, MA K, DU X H, et al. Advances in research on Xanthoceras sorbifolia [J]. Chinese Bulletin of Botany, 2002,19(3): 296-301.
    [2]
    高述民,马凯,杜希华,等.文冠果( Xanthoceras sorbifolia )研究进展[J].植物学通报,2002,19(3): 296-301.
    [3]
    侯元凯,李阳元,赵生军,等.文冠果结实情况的调查与产量的预测[J].经济林研究,2011,29(1):144-148.
    [3]
    HOU Y K, LI Y Y, ZHAO S J, et al. Fructification investigation and yield prediction in Xanthoceras sorbifolia [J]. Nonwood Forest Research, 2011,29(1):144-148.
    [4]
    SCHWARZ D, ROUPHAEL Y, COLLA G , et al. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants[J]. Scientia Horticulturae, 2010, 127(2): 162-171.
    [4]
    SUN J S, LI S F, DONG C X, et al. Research progress and prospect of long distance transmission of RNA molecules in grafted plants[J]. Scientia Silvae Sinicae, 2014,50(11):158-165.
    [5]
    CHANG Y M, ZHANG C H. Grafting techniques in Xanthoceras sorbifolia [J]. Nonwood Forest Research, 2013,31(2): 154-156.
    [5]
    GILARDI G, GULLINO M L, GARIBALDI A. Critical aspects of grafting as a possible strategy to manage soil-borne pathogens[J]. Scientia Horticulturae, 2013, 149: 19-21.
    [6]
    HAN S X, PENG M X, LI D Y. Influence of different grafting methods on survival rate of Xanthoceras sorbifolia Bunge[J]. Horticulture & Seed, 2012(7):72-74.
    [6]
    孙敬爽,李少峰,董辰希,等.嫁接植物体中RNA 分子长距离传递研究进展[J].林业科学,2014,50(11):158-165.
    [7]
    WU Y L, JIAO J, CHANG L R, et al. Study on graft technology of Xanthoceras sorbifolia [J]. Northern Horticulture, 2011(23): 29-30.
    [7]
    常月梅,张彩红.文冠果嫁接繁殖技术[J].经济林研究,2013,31(2):154-156.
    [8]
    韩淑贤,彭明喜,李冬云.不同嫁接方法对文冠果嫁接成活率的影响[J].园艺与种苗,2012(7):72-74.
    [8]
    WEI M, ZHUGE Y P, LOU Y H, et al.Effects of fertilization on Xanthoceras sorbifolia Bunge growth and soil enzyme activities[J].Journal of Soil and Water Conservation, 2010,24(2): 237-240.
    [9]
    吴月亮,焦健,常立儒,等.文冠果嫁接技术研究[J].北方园艺, 2011(23):29-30.
    [9]
    ZHANG Y, GUO J P, ZHANG Y X. Advances in research on drop causes and retention techniques in Xanthoceras sorbifolia [J]. Nonwood Forest Research, 2012,30(4):180-184.
    [10]
    魏猛,诸葛玉平,娄燕宏,等.施肥对文冠果生长及土壤酶活性的影响[J].水土保持学报,2010,24(2): 237-240.
    [10]
    LIU B,WANG L H,YIN L M,et al. Growth and fruiting characteristics of two age Xanthoceras sorbifolia Bunge trees[J].Journal of the Graduate School of the Chinese Academy of Sciences,2011,28(1): 73-79.
    [11]
    LU R K. Standard soil agro-chemical analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000: 328-338.
    [11]
    张燕,郭晋平,张芸香.文冠果落花落果成因及保花保果技术研究进展[J].经济林研究,2012,30(4): 180-184.
    [12]
    刘波,王力华,阴黎明,等.两种林龄文冠果的生长和结实特性[J].中国科学院研究生院学报,2011,28(1):73-79.
    [12]
    WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38 (3): 298-310.
    [13]
    DONG Y, DONG K, ZHENG Y, et al. Allelopathic effects and components analysis of root exudates of faba bean cultivars with different degrees of resistance to Fusarium oxysporum [J]. Chinese Journal of Eco-Agriculture, 2014, 22(3): 292-299.
    [13]
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000: 328-338.
    [14]
    WU F Z, AN M J. Effects of watermelon cultivars with different resistances to Fusarium oxysporum f. sp. niveum and grafting on rhizosphere soil microorganism population and community structure[J]. Scientia Agricultura Sinica, 2011, 44(22): 4636-4644.
    [14]
    ZSOLNAY A. Dissolved organic matter (DOM): artefacts, definitions, and functions[J]. Geoderma, 2003, 113(3-4): 187-209.
    [15]
    YIN Y L, ZHOU B L, LI Y P, et al. Effects of grafting on eggplant seed germination and seedling growth and soil biological activity under continuous cropping[J]. Chinese Journal of Ecology, 2009, 28(4): 638-642.
    [15]
    SOWERBY A, EMMETT B, BEIER C, et al. Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations [J]. Soil Biology and Biochemistry, 2005,37(10): 1805-1813.
    [16]
    BROOKES P C, LANDMAN A, PRUDEN G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil [J]. Soil Biology and Biochemistry, 1985, 17(6):837-842.
    [16]
    LIU N, ZHU W M, LU B, et al.Effects of grafting on the soil micro-ecological environment of tomato rhizosphere[J]. Acta Agriculturae Shanghai, 2014,30(5):6-10.
    [17]
    XIE Y F, TIAN Y Q, LI S, et al. Effects of single-root-grafting and double-root-grafting on cucumber rhizosphere soil microorganism and enzyme activity[J]. China Vegetables, 2012(24):62-68.
    [17]
    VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biology & Biochemistry, 1987, 19(6):703-707.
    [18]
    SU Y B, LIN C, ZHANG F S, et al. Effect of arbuscular mycorrhiza fungi ( Glomus mosseae , Glomus versiformea , Gigaspora margarita and Gigaspora rosea ) on phosphatase activities and soil organic phosphate content in clover rhizosphere[J]. Soils, 2003, 35 (4): 334-338.
    [18]
    SINSABAUGH R L, KLUG M J, COLLINS H P, et al. Characterizing soil microbial communities[M]//ROBERTSON G P, COLEMAN D C, BLEDSOE C S, et al. Standard soil methods for long-term ecological research. New York: Oxford University Press, 1999: 328-335.
    [19]
    DICK R P. Methods of soil enzymology[M]. Madison: Soil Science Society of America, Inc, 2011:103-210.
    [19]
    LI M, WU F Z. Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber[J]. Chinese Journal of Applied Ecology,2014,25(12): 3556-3562.
    [20]
    KONG A H, GENG Y Q, YU X X. Soil enzyme activities under Quercus variabis and Pinus tabulaeformis forests in lower mountain area, Beijing[J].Soils, 2013, 45(2): 264-270.
    [20]
    ALLISON S D, VITOUSEK P M. Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition[J]. Biotropica, 2004, 36(3): 285-296.
    [21]
    BOWLES T M, ACOSTA-MARTINEZ V, CALDERON F, et al. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape [J]. Soil Biology and Biochemistry, 2014, 68: 252-262.
    [22]
    吴林坤,林向民,林文雄.根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J].植物生态学报,2014, 38 (3): 298-310.
    [23]
    董艳,董坤,郑毅,等.不同抗性蚕豆品种根系分泌物对枯萎病菌的化感作用及根系分泌物组分分析[J].中国生态农业学报,2014, 22(3): 292-299.
    [24]
    吴凤芝,安美君. 西瓜枯萎病抗性及其嫁接对根际土壤微生物数量及群落结构的影响[J].中国农业科学, 2011, 44(22): 4636-4644.
    [25]
    PATERSON E, GEBBING T, ABEL C, et al. Rhizodeposition shapes rhizosphere microbial community structure in organic soil[J]. New Phytologist, 2007, 173(3), 600-610.
    [26]
    LIU N, ZHOU B. Grafting eggplant onto tomato rootstock to suppress Verticillium dahliae infection: the effect of root exudates[J].HortScience, 2009, 44(7): 2058-2062.
    [27]
    CHEN S L, ZHOU B L, LIN S S, et al. Allelopathic effects of cinnamic acid and vanillin on soil microbes, soil enzymes activities and growth of grafted eggplants[J]. Allelopathy Journal, 2011, 28(1): 29-40.
    [28]
    尹玉玲,周宝利,李云鹏,等.嫁接对茄子连作土壤生物活性及种子萌发和幼苗生长的影响[J].生态学杂志,2009,28(4): 638-642.
    [29]
    TIAN Y, ZHANG X, LIU J, et al. Microbial properties of rhizosphere soils as affected by rotation, grafting, and soil sterilization in intensive vegetable production systems[J]. Scientia Horticulturae, 2009, 123(2): 139-147.
    [30]
    刘娜,朱为民,鲁博,等.嫁接对番茄根际土壤微生态环境的影响[J].上海农业学报,2014,30(5):6-10.
    [31]
    谢远峰,田永强,李硕,等.黄瓜单砧与双砧嫁接对根际土壤微生物和酶活性的影响[J].中国蔬菜,2012(24):62-68.
    [32]
    RAIESI F, BEHESHTI A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran[J]. Applied Soil Ecology, 2014, 75: 63- 70.
    [33]
    TISCHER A, BLAGODATSKAYA E, HAMER U. Extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador affected by low soil P status and land-use change[J]. Applied Soil Ecology, 2014, 74: 1- 11.
    [34]
    BADRI D V, VIVANCO J M. Regulation and function of root exudates[J]. Plant Cell and Environment, 2009, 32(6): 666-681.
    [35]
    苏友波,林春,张福锁,等.不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响[J].土壤, 2003, 35(4): 334-338.
    [36]
    李敏,吴凤芝.不同填闲模式对黄瓜根际土壤酶活性及细菌群落的影响[J].应用生态学报,2014,25(12): 3556-3562.
    [37]
    孔爱辉,耿玉清,余新晓.北京低山区栓皮栎林和油松林土壤酶活性研究[J].土壤, 2013, 45(2): 264-270.
    [38]
    MCDANIEL M D, KAYE J P, KAYE M W. Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest[J]. Soil Biology and Biochemistry, 2013, 56(9): 90-98.
    [39]
    SHI W, DELL E, BOWMAN D, et al. Soil enzyme activities and organic matter composition in a turfgrass chronosequence[J]. Plant and Soil, 2006, 288(1-2): 285-296.
    [40]
    TIAN L, DELL E, SHI W. Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization[J].Applied Soil Ecology, 2010, 46(3): 426-435.
    [41]
    NG E L, PATTI A F, ROSE M T, et al. Does the chemical nature of soil carbon drive the structure and functioning of soil microbial communities?[J].Soil Biology and Biochemistry, 2014, 70:54-61.
  • Related Articles

    [1]Li Yuting, Ma Aiyun, Miao Zheng, Hao Yuanshuo, Dong Lihu. Effects of neighborhood competition on biomass and distribution of Larix olgensis[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230322
    [2]Zhao Qingxia, Xia Yufang. Effects of mowing modes on biomass, crude protein and crude fat contents of Broussonetia papyrifera in karst area[J]. Journal of Beijing Forestry University, 2023, 45(6): 62-68. DOI: 10.12171/j.1000-1522.20210425
    [3]Song Runxian, Li Xiang, Mao Xiuhong, Wang Li, Chen Xiangli, Yao Junxiu, Zhao Xiyang, Li Shanwen. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12-21. DOI: 10.12171/j.1000-1522.20210037
    [4]Yao Junxiu, Chen Ganniu, Li Shanwen, Qiao Yanhui, Zhong Weiguo, Li Qinghua, Dong Yufeng, Wu Dejun. Physiological and biochemical properties and growth of Aigeiros clones under cadmium stress[J]. Journal of Beijing Forestry University, 2020, 42(4): 12-20. DOI: 10.12171/j.1000-1522.20190462
    [5]Xing Lei, Xue Hai-xia, Li Qing-he, Gao Ting-ting. Scaling from leaf to whole plant in biomass and nitrogen content of Nitraria tangutorum seedlings[J]. Journal of Beijing Forestry University, 2018, 40(2): 76-81. DOI: 10.13332/j.1000-1522.20170338
    [6]LIU Kun, CAO Lin, WANG Gui-bin, CAO Fu-liang. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374
    [7]DONG Dian, LIN Tian-xi, TANG Jing-yi, LIU Jing-chen, SUN Guo-wen, YAO Jie, CHENG Yan-xia. Biomass allocation patterns and allometric models of Tilia amurensis[J]. Journal of Beijing Forestry University, 2014, 36(4): 54-63. DOI: 10.13332/j.cnki.jbfu.2014.04.013
    [8]ZHAO Xi-yang, WANG Jun-hui, ZHANG Jin-feng, ZHANG Shou-gong, ZHANG Zeng-shun, MA Jian-wei, YUN Hui-ling, LI Kui-you. Variation analysis on chlorophyll fluorescence and growth traits of Catalpa bungei clones[J]. Journal of Beijing Forestry University, 2012, 34(3): 41-47.
    [9]DUAN Wen-xia, ZHU Bo, LIU Rui, CHEN Shi, ZHOU Yu-ping, CHEN Fang. Biomass and soil carbon dynamics in Cryptomeria fortunei plantations[J]. Journal of Beijing Forestry University, 2007, 29(2): 55-59.
    [10]CHENG Tang-ren, MA Qin-yan, FENG Zhong-ke, LUO Xu. Research on forest biomass in Xiaolong Mountains, Gansu Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 31-36. DOI: 10.13332/j.1000-1522.2007.01.006
  • Cited by

    Periodical cited type(10)

    1. 苏芝凤,黄德周,朱芷仪,陈荣枢,代廷皓,梁建宏,朱婧. 亚热带森林不同土壤类型团聚体酶活性及化学计量特征的差异. 环境科学. 2025(03): 1716-1728 .
    2. 陈荣枢,王汝儒,孙佳豪,黄玲,杨思娴,蒲纪龙,黄慧敏,朱婧. 漓江流域海拔、土壤及植被对土壤养分和酶化学计量比的影响. 广西植物. 2023(02): 242-252 .
    3. 王吕,马庆兵,姜华,寸兴刚,段新慧,何承刚. 云南寻甸县湿地草甸植被、土壤因子和微生物的特征. 草业科学. 2023(07): 1754-1765 .
    4. 郑武扬,王艳霞,王月江,冯刚刚. 石漠化治理区不同优势树种根际土壤酶活性与土壤理化性质和微生物数量的关系. 东北林业大学学报. 2021(01): 96-100 .
    5. 张艳,王冬梅. 北方土石山区不同植被恢复模式土壤酶活性研究. 农业研究与应用. 2021(01): 42-46 .
    6. 涂志华,周凌峰,黄艳萍,陈夙怡,陈金辉,李胜男. 海南岛黎母山国家自然保护区热带云雾林土壤酶活性的根际效应. 水土保持通报. 2021(03): 1-7 .
    7. Zhouzhou Fan,Shuyu Lu,Shuang Liu,Zhaorong Li,Jiaxin Hong,Jinxing Zhou,Xiawei Peng. The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China. Journal of Forestry Research. 2020(05): 1949-1957 .
    8. 郑武扬,王艳霞,王月江,冯刚刚. 喀斯特石漠化区不同植被治理模式对土壤质量的影响. 西部林业科学. 2020(04): 41-47 .
    9. 李永双,范周周,国辉,周金星,彭霞薇. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响. 中国岩溶. 2020(06): 854-862 .
    10. 魏安琪,魏天兴,刘海燕,王莎. 黄土区刺槐和油松人工林土壤微生物PLFA分析. 北京林业大学学报. 2019(04): 88-98 . 本站查看

    Other cited types(12)

Catalog

    Article views (1856) PDF downloads (18) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return