• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
XIAO Di, WANG Xiao-jie, ZHANG Kai, KANG Feng-feng, HE Nian-peng, HOU Ji-hua. Effects of simulated nitrogen deposition on growth of Acer mono seedlings.[J]. Journal of Beijing Forestry University, 2015, 37(10): 50-57. DOI: 10.13332/j.1000-1522.20150079
Citation: XIAO Di, WANG Xiao-jie, ZHANG Kai, KANG Feng-feng, HE Nian-peng, HOU Ji-hua. Effects of simulated nitrogen deposition on growth of Acer mono seedlings.[J]. Journal of Beijing Forestry University, 2015, 37(10): 50-57. DOI: 10.13332/j.1000-1522.20150079

Effects of simulated nitrogen deposition on growth of Acer mono seedlings.

More Information
  • Received Date: March 19, 2015
  • Published Date: October 30, 2015
  • To evaluate the effects of simulated nitrogen deposition on growth and biomass allocation of Acer mono seedlings, we collected 3-year-old seedlings from three provenances, Beijing (BJ), Shanxi (SX) and Inner Mongolia (NMG) planted in a common garden. Five nitrogen fertilization treatments were set: control (N0, 0 kg/(haa)), low-N (N1, 15 kg/(haa)), medium-N (N2, 25 kg/(haa)), high-N (N3, 50 kg/(haa)) and supersaturated-N (N4, 150 kg/(haa)). The differences in stem basal diameter (D), seedling height (H), biomass and the biomass allocation ratio between treatments were examined. The results showed that: 1) simulated nitrogen deposition significantly improved D, H, and monthly growth of D and H (D, H) of seedlings of different provenances; 2) simulated nitrogen deposition had little effect on the biomass of seedlings from BJ, while the biomass of seedlings from SX and NMG had obvious response to the addition of nitrogen, and the maximum values showed in N2 for SX seedlings and N3 for NMG seedlings; 3) simulated nitrogen deposition had significant influence on seedling biomass allocation: RMR and RSR decreased while SMR and SLR increased, indicating that seedlings cut down the investment on the development of root and leaf, but reinforced on stem construction; 4) the analysis of sources of variation showed that the variation of D, H and biomass of different organs related closely with both nitrogen treatment and provenance, but SMR, LMR and SLR were only associated with nitrogen treatment and independent of provenance.
  • [1]
    VITOUSEK P M, MOONEY H A, LUBCHENCO J, et al. Human domination of earths ecosystems[J]. Science, 1997, 277: 494-499.
    [1]
    DIAZ S, LAVOREL S, MCINTYRE S, et al. Plant trait responses to grazing:a global synthesis[J]. Global Change Biology, 2007, 13: 313-341.
    [2]
    ZHENG X, FU C, XU X, et al. The Asian nitrogen cycle case study [J]. Ambio, 2002, 31: 79-87.
    [3]
    PHOENIX G K, HICKS W K, CINDERBY S, et al. Atmosphere nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts[J]. Global Change Biology, 2006, 12(3): 470-476.
    [4]
    BERGER T W, GLATZEL G. Response of Quercus petraea seedlings to nitrogen fertilization[J]. Forest Ecology and Management, 2001, 149: 1-14.
    [5]
    李德军, 莫江明, 彭少麟, 等. 南亚热带森林两种优势树种幼苗的元素含量对模拟氮沉降增加的响应[J]. 生态学报, 2005, 25(9): 2165-2172.
    [6]
    LI D J, MO J M, PENG S L, et al. Effects of simulated nitrogen deposition on elemental concentrations of Schima superba and Cryptocarya concinna seedlings in subtropical China[J]. Acta Ecologica Sinica, 2005, 25(9): 2165-2172.
    [7]
    BAUER G A, BAZZAZ F A, MINOCHA R, et al. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States[J]. Forest Ecology and Management, 2004, 196: 173-186.
    [8]
    李德军, 莫江明, 方运霆, 等. 氮沉降对森林植物的影响[J]. 生态学报, 2003, 23(9):1891-1900.
    [9]
    LI D J, MO J M, FANG Y T, et al. Impact of nitrogen deposition on forest plants[J]. Acta Ecologica Sinica, 2003, 23(9): 1891-1900.
    [10]
    姬志峰. 山西五角枫天然种群表型多样性研究[D]. 临汾:山西师范大学, 2013.
    [11]
    JI Z F. Study on phenotypic diversity of natural population in Acer mono Maxim in Shanxi[D]. Linfen: Shanxi Normal University, 2013.
    [12]
    姚婧, 李颖, 魏丽萍, 等. 东灵山不同林型五角枫叶性状异速生长关系随发育阶段的变化[J]. 生态学报, 2013, 33(13): 3907-3915.
    [13]
    YAO J, LI Y, WEI L P, et al. Changes of allometric relationships among leaf traits in different ontogenetic stages of Acer mono from different types of forests in Donglingshan of Beijing[J]. Acta Ecologica Sinica, 2013, 33(13): 3907-3915.
    [14]
    于永畅, 张林, 王厚新, 等. 三个五角枫品种光合特性比较[J]. 北方园艺, 2013(2): 57-60.
    [15]
    YU Y C, ZHANG L, WANG H X, et al. Comparison of photosynthetic characteristics of three Acer mono varieties[J]. Northern Horticulture, 2013(2): 57-60.
    [16]
    陈志成. 8个树种对干旱胁迫的生理响应及抗旱性评价[D].泰安:山东农业大学, 2013.
    [17]
    CHEN Z C. Physiological response of eight tree species to drought stress and evaluation of drought resistance[D].Taian: Shandong Agricultural University, 2013.
    [18]
    吴晓莆. 东灵山地区辽东栎群落中植物种群的时空格局研究[D]. 北京:中国科学院植物研究所, 2001.
    [19]
    WU X P.Investigation to temporal and spatial pattern of phytopopulation in Quercus liaoturgesis Koidz forest communities in Dongling Mountain Region[D]. Beijing:Institute of Botany of Chinese Academy of Sciences, 2001.
    [20]
    蒋思思, 魏丽萍, 侯继华. 模拟氮沉降对油松幼苗光合特性的影响[J]. 广东农业科学, 2014, 42(13): 44-48.
    [21]
    JIANG S S, WEI L P, HOU J H. Effect of simulated nitrogen deposition on photosynthetic characteristics of Chinese pine (Pinus tabulaeformis Carr.) seedlings[J]. Guangdong Agricultural Science, 2014, 42(13): 44-48.
    [22]
    ELBERSE I A M, DAMME J M M, TIENDEREN P H. Plasticity of growth characteristics in wild barley (Hordeum spontaneum) in response to nutrient limitation[J]. Journal of Ecology, 2003, 91: 371-382.
    [23]
    TAMM C O. Nitrogen in terrestrial ecosystems: questions of productivity, vegetational changes, and ecosystem stability [M]. Berlin: Springer-Verlag, 1991: 116.
    [24]
    邓斌, 曾德慧. 添加氮肥对沙地樟子松幼苗生物量分配与叶片生理特性的影响[J]. 生态学杂志, 2006, 25(11): 1312-1317.
    [25]
    DENG B, ZENG D H. Effects of nitrogen fertilization on biomass partitioning and leaf physiological characteristics of Pinus sylvestris var. mongolica seedlings on sandy soil[J]. Chinese Journal of Ecology, 2006, 25 (11): 1312-1317.
    [26]
    吴茜, 丁佳, 闫慧, 等. 模拟降水变化和土壤施氮对浙江古田山5个树种幼苗生长和生物量的影响[J]. 植物生态学报, 2011, 35(3): 256-267.
    [27]
    WU Q, DING J, YAN H, et al. Effects of simulated precipitation and nitrogen addition on seedling growth and biomass in five tree species in Gutian Mountain, Zhejiang Province, China[J]. Chinese Journal of Plant Ecology,2011, 35(3): 256-267.
    [28]
    李化山, 汪金松, 法蕾, 等. 模拟氮沉降对油松幼苗生长的影响[J]. 应用与环境生物学报, 2013, 19(5): 774-780.
    [29]
    LI H S, WANG J S, FA L, et al. Effects of simulated nitrogen deposition on seedling growth of Pinus tabulaeformis [J]. Chinese Journal of Applied Ecology, 2013, 19(5) : 774-780.
    [30]
    MAGILL A H, ABER J D, BERNTSON G M, et al. Long-term nitrogen additions and nitrogen saturation in two temperate forests[J]. Ecosystems, 2000, 3: 238-253.
    [31]
    方运霆, 莫江明, 周国逸, 等. 鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应[J]. 热带亚热带植物学报, 2005, 13(3): 198-204.
    [32]
    FANG Y T, MO J M, ZHOU G Y, et al. Response of diameter at breast height increment to N addition in forests of Dinghushan Biosphere Reserve[J]. Jounal of Tropical and Subtropical Botany, 2005,13(3): 198-204.
    [33]
    POORTER H, NAGEL O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review[J]. Australian Journal Plant Physiology, 2000, 27: 595-607.
    [34]
    PERSSON H, AHLSTROM K, CLEMENSSON L A. Nitrogen addition and removal at garden-effects on fine-root growth and fine-root chemistry[J]. Forest Ecology and Management, 1998, 101: 199-206.
    [35]
    JOHANSSON M. The influence of ammonium nitrate on the root growth and ericoid mycorrhizal colonization of Calluna vulgaris (L.) Hull from a danish heathland[J]. Oecologia, 2000, 123: 418-424.
    [36]
    刘洋, 张健, 陈亚梅, 等. 氮磷添加对巨桉幼苗生物量分配和C∶N∶P化学计量特征的影响[J]. 植物生态学报, 2013, 37(10): 933-941.
    [37]
    LIU Y, ZHANG J, CHEN Y M, et al. Effect of nitrogen and phosphorus fertilization on biomass allocation and C∶N∶P stoichiometric characteristics of Eucalyptus grandis seedlings[J]. Chinese Journal of Plant Ecology, 2013, 37(10): 933-941.
    [38]
    王晓荣, 潘磊, 唐万鹏, 等. 氮素添加对中亚热带栎属不同树种幼苗生长及生物量分配的短期影响[J]. 东北林业大学学报, 2014, 42(6): 24-28.
    [39]
    WANG X R, PAN L, TANG W P, et al. Short-term effects of nitrogen addition on seedling growth and biomass allocation with different tree species of Quercus in the mid-subtropics of China[J]. Jounal of Northeast Forestry University, 2014, 42(6): 24-28.
    [40]
    GIARDINA C P, RHOADES C C. Clear cutting and burning affect nitrogen supply, phosphorus fractions and seedling growth in soil from Wyoming lodgepole pine forest[J]. Forest Ecology and Management, 2001, 140: 19-28.
    [41]
    杨冬梅, 章佳佳, 周丹, 等. 木本植物茎叶功能性状及其关系随环境变化的研究进展[J]. 生态学杂志, 2012, 31(3): 702-713.
    [42]
    YANG D M, ZHANG J J, ZHOU D, et al. Leaf and twig functional traits of woody plants and their relationships with environmentalchange: a review[J]. Chinese Journal of Ecology, 2012, 31(3): 702-713.
  • Related Articles

    [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]WANG Cui-cui, ZHANG Shuang-bao, XIAN Yu, WANG Dan-dan, GAO Jie, CHENG Hai-tao. Properties of plant fibers and their composites modified in situ with calcium carbonate[J]. Journal of Beijing Forestry University, 2016, 38(3): 95-101. DOI: 10.13332/j.1000-1522.20150297
    [5]GUO Kai-li, GAO Jia-rong, MA Lan, LIU Guo-hua, WANG Bing, YI Yang, WANG Shu, ZHANG Teng-fei. Distribution and tensile mechanical properties of Salix × aureo-pendula root system in soil bioengineering revetment[J]. Journal of Beijing Forestry University, 2015, 37(8): 90-96. DOI: 10.13332/j.1000-1522.20150022
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [10]MENG Xi, WANG Ruo-han, XIE Lei, LONG Ru, MOU Shu-lin, ZHANG Zhi-xiang. Flowering dynamics and dichogamous mechanism in Magnolia grandiflora[J]. Journal of Beijing Forestry University, 2011, 33(4): 63-69.
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views (1759) PDF downloads (38) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return