• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
LIU Xi-zhen, FENG Huan-ying, CAI Cun-ju, FAN Shao-hui, LIU Guang-lu. Response of leaf functional traits of Moso bamboo during the invading process into the broad-leaved forest[J]. Journal of Beijing Forestry University, 2015, 37(8): 8-10. DOI: 10.13332/j.1000-1522.20150157
Citation: LIU Xi-zhen, FENG Huan-ying, CAI Cun-ju, FAN Shao-hui, LIU Guang-lu. Response of leaf functional traits of Moso bamboo during the invading process into the broad-leaved forest[J]. Journal of Beijing Forestry University, 2015, 37(8): 8-10. DOI: 10.13332/j.1000-1522.20150157

Response of leaf functional traits of Moso bamboo during the invading process into the broad-leaved forest

More Information
  • Received Date: May 04, 2015
  • Revised Date: May 04, 2015
  • Published Date: August 30, 2015
  • As a clonal plant, Moso bamboo can invade surrounding forests; however, little information on the leaf functional traits of the species during the invading process is known. In this study, we examined dry matter content (LDMC), carbon content (C) and stoichiometric ratios of leaves among four forest types(type 1: pure bamboo forest, type 2:bamboo-dominated mixed forest, type 3: broad-leaved trees-dominated mixed forest, and type 4: nearly pure broad-leaved forest)as well as at differentculm age classes (Ⅰ,Ⅱ, Ⅲ and Ⅳ).The LDMC, C and N∶P ratios were significantly different among the four forest types; the LDMC in type 2 was significantly higher than that in type 4, the C in type 1 was significantly lower than that in types 3 and 4, and N:P ratios in types 1 and 2 were higher than those in types 3 and 4. No significant differences were found for specific leaf area (SLA), leaf nitrogen content (N), leaf phosphours content (P) and leaf N:P ratio among the four types. These results demonstrated that Moso bamboo has taken adaptive measuresto different habitats.With regard to the culm age, the SLA and LDMC were significantly different among the four culm age classes in type 1; for instance, both in class I differed remarkably from that in Ⅲ and Ⅳ, respectively. In type 2, the C, N and C∶N ratio showed remarkable differences among the age classes, while N∶P ratios were different in types 1-3, having the lowest in class Ⅱ, followed by class Ⅰ. These findings indicated that the leaf functional traits caused by culm age was more distinct compared with other three forest types.The inconsistency of age effect was most likely caused by the stronger environmental influences,which counteracted the variation in growing culm with different ages in types 2-4. Bivariate correlations indicated that SLA correlated significantly negatively with LDMC, but positively with C, N and P, while LDMC showed opposite relationships with C, N and P, respectively;N was positively correlated with P. When SLA and LDMC changed, the most notable variation occurred in C, followed by N, and least in P, suggesting that the stoichiometric ratios (tradeoff) of leaf functional traits of Moso bamboo has presented adaptive adjustment during the invading process.
  • [1]
    ZHANG L, LUO T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J].Chinese Journal of Plant Ecology,2004,28(6):844-852.
    [1]
    DÍAZ S, LAVOREL S, DEBELLO F, et al. Incorporating plant functional diversity effects in ecosystem service assessments [J]. Proceedings of the National Academy of Sciences,2007,104(52):20684-20689.
    [2]
    MCINTYRE S, LAVOREL S, LANDSBERG J, et al. Disturbance response in vegetation-towards a global perspective on functional traits[J]. Journal of Vegetation Science,1999,10(5):621-630.
    [2]
    LIU J H, ZENG D H, LEEDK. Leaf traits and their interrelationships of main plant species in southeast Horqin standy land[J]. Chinese Journal of Ecology, 2006,25(8):921-925.
    [3]
    SACK L, SCOFFONI C, JOHN G P, et al. How do leaf veins influence the worldwide leaf economic spectrum:review and synthesis [J]. Journal of Experimental Botany,2013,64(13):4053-4080.
    [3]
    CHEN Y T, XU Z Z. Review on research of leaf economics spectrum[J].Chinese Journal of Plant Ecology,2014,38(10):1135-1153.
    [4]
    REN S J, YU G R, JIANG C M, et al. Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the North-South Transect of East China[J].Chinese Journal of Applied Ecology, 2012,23(3):581-586.
    [4]
    WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum [J]. Nature,2004,428:821-827.
    [5]
    WANG J Y, WANG S Q, LI R L, et al. C∶N∶P stoichiometric characteristics of four forest types' dominant tree species in China[J].Chinese Journal of Plant Ecology, 2011, 35 (6): 587-595.
    [5]
    DIAZ S, HODGSON J G, THOMPSON K, et al. The plant traits that drive ecosystems: evidence from three continents[J]. Journal of Vegetation Science,2004,15(3):295-304.
    [6]
    WESTOBY M. A leaf-height-seed (LHS) plant ecology strategy scheme[J]. Plant and Soil,1998,199(2):213-227.
    [6]
    BAO L, LIU Y H. Comparison of leaf functional traits in different forest communities in Mt. Dongling of Beijing[J].Acta Ecologica Sinica, 2009,29(7):3692-3703.
    [7]
    HUANG J J, WANG X H. Leaf nutrient and structural characteristics of 32 evergreen broad-leaved species[J].Journal of East China Normal University: Natural Science,2003(1):92-97.
    [7]
    张林,罗天祥.植物叶寿命及其相关叶性状的生态学研究进展[J].植物生态学报,2004,28(6):844-852.
    [8]
    QI J, MA K M, ZHANG Y X. Comparisons on leaf traits of Quercus liaotungensis Koidz.on different slope positions in Dongling Mountain of Beijing[J]. Acta Ecologica Sinica,2008,28(1):122-128.
    [8]
    刘金环,曾德慧,LEEDK.科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J].生态学杂志,2006,25(8):921-925.
    [9]
    LIU Y D, FAN S H, CAI C J, et al. Litter characteristics of nutrient and stoichiometry for Phyllostachys praecox over soil-surface mulching[J]. Acta Ecologica Sinica,2012,32(22):6955-6963.
    [9]
    陈莹婷,许振柱.植物叶经济谱的研究进展[J].植物生态学报,2014,38(10):1135-1153.
    [10]
    LAVOREL S. Plant functional effects onecosystem services[J]. Journal of Ecology, 2013,101:4-8.
    [10]
    ZHOU F C. Silviculture of bamboo forest[M]. Beijing:China Forestry Publishing,1998.
    [11]
    SU W H. Fertilization theory and practice for Phyllostachys edulis stand based on growth and nutrient accumulation rules[D]. Beijing: Chinese Academy of Forestry, 2012.
    [11]
    CHO Y S, GO M J, KIM Y J, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits[J]. Nature Genetics,2009,41(5):527-534.
    [12]
    任书杰,于贵瑞,姜春明,等.中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征[J].应用生态学报,2012,23(3):581-586.
    [12]
    WANG Y P, TAO J P, LIU J X, et al. Response of leaf functional traits to different light regimes in an evergreen broad-leaved forest in the Jin yun Mountain[J]. Scientia Silvae Sinicae,2012,48(11):23-29.
    [13]
    GAO S P, LI J X, XU M C, et al. Leaf N and P stoichiometry of common species in sunccessional stages of the evergreen broad-leaved forest in Tiantong National Forest Park, Zhejiang Province, China[J]. Acta Ecologica Sinica,2007,27(3):947-952.
    [13]
    HAN W, FANG J, GUO D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist,2005,168(2):377-385.
    [14]
    王晶苑,王绍强,李纫兰,等.中国四种森林类型主要优势植物的C∶N∶P化学计量学特征[J].植物生态学报,2011, 35 (6): 587-595.
    [15]
    XIA C, YU D, WANG Z, et al. Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China[J]. Ecological Engineering,2014,70:406-413.
    [16]
    宝乐,刘艳红.东灵山地区不同森林群落叶功能性状比较[J].生态学报,2009,29(7):3692-3703.
    [17]
    BILL S, JARCILENCA C. Interspecific leaf area with respect to irradiance and nutrient availability [J]. Eco Science,2003,10(1):74-79.
    [18]
    DENIS V, ERIC G, BILL S, et al. Specific leaf area and dry mater content estimate thickness in laminar leaves[J]. Annals of Botany,2005,96:1129-1136.
    [19]
    BOERNERR E J. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility[J]. Journal of Applied Ecology,1984,21:1029-1040.
    [20]
    黄建军,王希华.浙江天童32种常绿阔叶树叶片的营养及结构特征[J].华东师范大学学报:自然科学版,2003(1):92-97.
    [21]
    祁建,马克明,张育新.北京东灵山不同坡位辽东栎( Quercus liaotungensis )叶属性的比较[J].生态学报,2008,28(1):122-128.
    [22]
    GARNIER E, SHIPLEY B, ROUMET C, et al. A standardized protocol for the determination of specific leaf area and leaf dry matter content[J]. Functional Ecology,2001,15(5):688-695.
    [23]
    刘亚迪,范少辉,蔡春菊,等.地表覆盖栽培对雷竹林凋落物养分及其化学计量特征的影响[J].生态学报,2012,32(22):6955-6963.
    [24]
    AERTS R, CHAPIN F S Ⅲ. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research,2000,30:1-67.
    [25]
    GÜSEWELL S. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist,2004,164:243-266.
    [26]
    VONOHEIMB G, POWER S A, FALK K, et al. N∶P ratio and the nature of nutrient limitation in Calluna-Dominated Heathlands[J]. Ecosystems,2010,13:317-327.
    [27]
    TESSIER J T, RAYNALDJ. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology,2003,40(3):523-534.
    [28]
    周芳纯.竹林培育学[M].北京:中国林业出版社,1998.
    [29]
    苏文会.基于生长和养分积累规律的毛竹林施肥理论与实践研究[D].北京:中国林业科学研究院,2012.
    [30]
    王玉平,陶建平,刘晋仙,等.不同光环境下6种常绿阔叶林树种苗期的叶片功能性状[J].林业科学,2012,48(11):23-29.
    [31]
    高三平,李俊祥,徐明策,等.天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征[J].生态学报,2007,27(3):947-952.
  • Related Articles

    [1]Zou Xuge, Wang Yin, Wang Jianming, Qu Mengjun, Zhu Weilin, Zhao Hang, Si Jianhua, Li Jingwen. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82-92. DOI: 10.12171/j.1000-1522.20220522
    [2]Zhang Yue, Tian Qing, Huang Rong. Responses of typical plant functional traits among summer-flowering tree species in heterogeneous city habitats in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 90-99. DOI: 10.12171/j.1000-1522.20210476
    [3]Zhang Rishi, Huang Zhenge, He Bin, Xie Minyang, Zhou Gang, Wei Mingbao. Biomass accumulation and productivity changes of Taiwania flousiana plantation at different age stages in northwestern Guangxi, southern China[J]. Journal of Beijing Forestry University, 2021, 43(11): 20-27. DOI: 10.12171/j.1000-1522.20200107
    [4]Ren Hao, Gao Guoqiang, Ma Yaoyuan, Li Zuwang, Gu Jiacun. Root nitrogen uptake and its relationship with root morphological and chemical traits in Pinus koraiensis at different ages[J]. Journal of Beijing Forestry University, 2021, 43(10): 65-72. DOI: 10.12171/j.1000-1522.20200385
    [5]YAN Bo-qian, LIN Wan-zhong, LIU Qi-jing, YU Jian. Age-dependent radial growth responses of Larix chinensis to climatic factors in Qinling Mountains, northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 58-65. DOI: 10.13332/j.1000-1522.20170161
    [6]YANG Li-xue, WANG Hai-nan, FAN Jing. Effects of donor tree ages and plant growth regulators on the softwood cutting propagation of Hippophae rhamnoides[J]. Journal of Beijing Forestry University, 2011, 33(6): 107-111.
    [7]HU Yun-yun, KANG Xin-gang, GAO Yan, FENG Qi-xiang, YAO Jing-chun3, WANG Zhuo-hui. Variation of tree age for natural spruce-fir-broadleaved forests and estimation precision.[J]. Journal of Beijing Forestry University, 2011, 33(4): 22-27.
    [8]XING Mei-jun, YANG Gang, HUANG Xin-yuan, WANG Zhong-zhi. Defining physiological age of plant organs[J]. Journal of Beijing Forestry University, 2010, 32(4): 181-185.
    [9]HOU Zheng-yang, , XU Qing, FENG Zhong-ke. New framework of forest management in the new age.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 300-305.
    [10]ZHOU Dan-hui, HE Hong-shi, LI Xiu-zhen, ZHOU Chun-hua, WANG Xu-gao, CHEN Hong-wei. Potential responses of different stand age classes to climate changes in the Xiaoxinganling Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2007, 29(4): 110-117. DOI: 10.13332/j.1000-1522.2007.04.024
  • Cited by

    Periodical cited type(27)

    1. 佟富春,吴智华,林瑞雪,吴晓君,邓惠方,黄子峻,李仁杰,栾军伟. 毛竹扩张对南亚热带常绿阔叶林土壤跳虫群落特征的影响. 中南林业调查规划. 2024(01): 51-57+70 .
    2. 应益山,凡莉莉,陈双林,郭子武,胡瑞财. 苦竹扩张茶园过程中茶树叶片性状及其异速生长关系变化特征. 竹子学报. 2024(02): 50-57 .
    3. 汪忠华,陈双林,胡瑞财,郭子武,江秀琴,凡莉莉. 苦竹向茶园扩张后不同年龄立竹叶片的功能性状变化特征研究. 西南林业大学学报(自然科学). 2024(05): 25-34 .
    4. 陈禹锦,于芬,国春策,杨光耀,张文根. 基于MaxEnt生态位模型的毛竹全球潜在适生区预测与分析. 世界竹藤通讯. 2024(05): 47-58 .
    5. 董亚文,谢燕燕,陈双林,郭子武,张景润,汪舍平. 林下植被演替过程中毛竹枝叶形态质量和抽枝展叶效率变化特征. 植物科学学报. 2023(04): 437-446 .
    6. 周德中,周小枫,王绍剑,刘骏,王涓,李怡. 基于文献计量学的毛竹扩张研究现状可视化分析. 生物灾害科学. 2023(04): 519-528 .
    7. 蔡世锋. 木荷与杉木混交对林木生长及叶功能性状的影响. 福建林业科技. 2023(04): 55-61 .
    8. 佟富春,吴智华,林瑞雪,吴晓君,邓惠方,袁千允,栾军伟,肖以华. 毛竹扩张对土壤甲螨群落结构的影响. 东北林业大学学报. 2022(02): 59-64 .
    9. 阮宇,胡景涛,肖国生,李俊清,任凭. 中山杉功能性状适应三峡库区消落带研究. 生态学报. 2022(07): 2921-2930 .
    10. 夏恩龙,农珺清,魏松坡,刘希珍,刘广路. 毛竹向阔叶林扩展过程中土壤养分变化特征. 生态环境学报. 2022(06): 1110-1117 .
    11. 程明圣,邹娜. 毛竹扩张对森林生态的影响及其管控研究进展. 江汉大学学报(自然科学版). 2021(03): 49-55 .
    12. 陈禹锦,罗喻才,于芬,杨光耀,张文根. 气候变化情景下毛竹潜在分布及动态预测. 世界竹藤通讯. 2021(03): 5-14 .
    13. 何玉友,陈双林,郭子武,张玮,汪舍平. 不同弃管年限毛竹林立竹叶片功能性状的变化特征. 福建农林大学学报(自然科学版). 2021(05): 641-648 .
    14. 黄彪,刘广路,范少辉,刘希珍,冯云,农珺清,申景昕. 毛竹向阔叶林扩展过程细根可塑性变化. 中南林业科技大学学报. 2021(10): 11-19 .
    15. 王敬哲,陈志强,陈志彪,潘宗涛. 南方红壤侵蚀区不同植被恢复年限下芒萁叶功能性状对土壤因子的响应. 生态学报. 2020(03): 900-909 .
    16. 郭雯,张建,漆良华,商泽安,王锐,杨畅. 毛竹及其变种叶功能性状与影响因素. 森林与环境学报. 2020(03): 260-268 .
    17. 张秀芳,穆振北,林美娇,江淼华,巩嘉欣,游巍斌. 琅岐岛4种优势植物叶功能性状及其影响因子. 应用与环境生物学报. 2020(03): 667-673 .
    18. 池鑫晨,宋超,朱向涛,王楠,王晓雨,白尚斌. 毛竹入侵常绿阔叶林对土壤活性有机碳氮的动态影响. 生态学杂志. 2020(07): 2263-2272 .
    19. 钟雅琪,钟全林,李宝银,余华,徐朝斌,程栋梁,乐新贵,郑文婷. 毛竹扩张对亚热带常绿阔叶林主要树种叶结构型性状的影响. 生态学报. 2020(14): 5018-5028 .
    20. 张秀梅,许建新,何新杰,张朝铖,沈彦会,张竞元. 高温胁迫对洋竹草生长及部分生理指标的影响. 江西农业学报. 2019(06): 40-44 .
    21. 童冉,周本智,姜丽娜,曹永慧,葛晓改,杨振亚. 毛竹入侵对森林植物和土壤的影响研究进展. 生态学报. 2019(11): 3808-3815 .
    22. 范少辉,申景昕,刘广路,冯云,刘希珍,蔡春菊. 毛竹向杉木林扩展对土壤养分含量及计量比的影响. 西北植物学报. 2019(08): 1455-1462 .
    23. 喻阳华,钟欣平,程雯. 黔西北地区优势树种叶片功能性状与经济谱分析. 森林与环境学报. 2018(02): 196-201 .
    24. 郭雯,徐瑞晶,漆良华,胡璇,丁霞,程昌锦,张建,雷刚. 竹类植物光合特性与叶片功能性状研究. 世界林业研究. 2018(04): 29-35 .
    25. 刘广路,范少辉,唐晓鹿,刘希珍. 毛竹向杉木林扩展过程中叶功能性状的适应策略. 林业科学. 2017(08): 17-25 .
    26. 刘广路,范少辉,蔡春菊,刘希珍. 毛竹向撂荒地扩展过程中叶功能性状变化. 南京林业大学学报(自然科学版). 2017(02): 41-46 .
    27. 刘广路,刘希珍,李雁冰,罗天磊,蔡春菊,范少辉. 毛竹向撂荒地扩展过程中细根性状变化特征. 热带作物学报. 2017(07): 1204-1209 .

    Other cited types(14)

Catalog

    Article views (1979) PDF downloads (31) Cited by(41)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return