Finite element modeling of wind resistance of single trees based on linear filtering method
-
-
Abstract
Wind disaster is one of the main disasters causing damage to forest. Study of structural characteristics and mechanical abilities of trees can help us understand more about the stress state of single trees and the area most likely to break when destroyed by wind, so as to take measures to enhance the safety and stability of the forest. In this study, we used the linear filtering method to simulate the fluctuating wind model which is close to actual conditions. The finite element method was employed to simulate the tree under wind load, and then the stress state and structural displacement of different parts of the tree under the effect of dynamic wind loads were obtained. The process of building the model is divided into two parts: the first is the simulation of wind by applying the linear filtering method, and we calculate the wind field in a specific area; the second part is to construct the finite element model of the tree. Then the tree model is set in this wind field. The variables such as density and elastic module could be controlled by variables related to tree height. Macro file of the model building could be obtained by changing some specific variables of the command stream file. After applying the load, we collect the data and analyze the wind resisting ability of the tree. In this simulation, we choose Pinus thunbergii in the coastal protection forest as our research object. Through simulation, we can know more about the tree’s reaction to the fluctuating wind load and the weakness of the tree in response to the wind load, so as to take appropriate measures such as frequent thinning or reinforcement to enhance the tree’s stability.
-
-