• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
FAN Li, LIU Jin-hao, HUANG Qing-qing. Point cloud segmentation algorithm based on feature fusion used for understory environments[J]. Journal of Beijing Forestry University, 2016, 38(5): 133-138. DOI: 10.13332/j.1000-1522.20150332
Citation: FAN Li, LIU Jin-hao, HUANG Qing-qing. Point cloud segmentation algorithm based on feature fusion used for understory environments[J]. Journal of Beijing Forestry University, 2016, 38(5): 133-138. DOI: 10.13332/j.1000-1522.20150332

Point cloud segmentation algorithm based on feature fusion used for understory environments

More Information
  • Received Date: September 12, 2015
  • Revised Date: September 12, 2015
  • Published Date: May 30, 2016
  • Aimed at the complexity of geometric features of understory environments and the deficiency of edge detection based method, region growing based method and clustering feature based method, we propose a new point cloud segmentation algorithm based on feature fusion. The 3D data set acquired from Beijing Forestry University using a FARO laser scanner consists of 1166302 points after removing outliers and filtering. The data set has four targets, i.e., tree, ground, stone and person. Point cloud segmentation can be achieved via fusing normal vector and laser reflection intensity of each point. The laser reflection intensity values can be obtained from point cloud data set directly, and normal vector should be calculated based on the Plane PCA algorithm. Also, it is necessary to create kd-tree data structure and perform k-NN search during the calculation of normal vector. Segmentation is realized after fusing the advantages of normal vector and laser reflection intensity and calculating synthetical difference degree between query points and neighborhood points. Comparing the segmentation results from point cloud segmentation algorithms based on feature fusion, normal vector and laser reflection intensity, the method based on feature fusion overcomes the problem of data deficiency that the other two methods suffer.
  • [1]
    NOVAK L M, BURL M C. Optimal speckle reduction in polarimetric SAR imagery[J]. Aerospace & Electronic Systems IEEE Transactions, 1990, 26(2):293-305.
    [1]
    ZHANG Q. Research of visual recognition algoriyhm for service robot based on PCL[D].Hefei: University of Science and Technology of China, 2014.
    [2]
    LIU Y F. Theory and method on point cloud data spatial management based on kd-tree[D]. Changsha: Central South University, 2009.
    [2]
    GOZE S, LOPES A. A MMSE speckle filter for full resolution SAR polarimetric data[J]. Journal of Electromagnetic Waves & Applications, 1993, 7(7):717-737.
    [3]
    HOFFMAN R, JAIN A K. Segmentation and classification of range images[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1987, 9(5):608-620.
    [3]
    ZHANG L W. Research on the technology of the three-dimensional surface reconstruction from scattered point cloud[D].Changsha: Graduate School of National University of Defense Technology,2009.
    [4]
    HUANG J, MENQ C H. Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points[J]. Robotics & Automation IEEE Transactions, 2001, 17(3):268-279.
    [4]
    ZHU D H. Point cloud library(PCL) learning tutorial[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2012.
    [5]
    LI T S, WANG Y M, HU C M. The study of point cloud registration automatically based on laser reflection intensity[J]. Bulletin of Surveying and Mapping, 2014(Suppl. 2):143-145.
    [5]
    JEAN K, MINSOO S, SUCHENDRA M B. A multilayer self-organizing feature map for range image segmentation[J]. Neural Networks, 1995, 8(1): 67-86.
    [6]
    PU S, VOSSELMAN G. Knowledge based reconstruction of building models from terrestrial laser scanning data[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2009, 64(6):575-584.
    [7]
    KOH J, SUK M, BHANDARKAR S M. A self-organizing neural network for hierarchical range image segmentation[C]//IEEE International Conference on Robotics & Automation. Atlanta, GA: IEEE, 1993:758-763.
    [8]
    张强. 基于点云库的服务机器人视觉识别算法研究[D]. 合肥:中国科学技术大学, 2014.
    [9]
    刘艳丰. 基于kd-tree的点云数据空间管理理论与方法[D]. 长沙:中南大学, 2009.
    [10]
    KLASING K, ALTHOFF D, WOLLHERR D, et al. Comparison of surface normal estimation methods for range sensing applications[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Kobe, Japan:IEEE, 2009:12-17.
    [11]
    SHAKARJI C M. Least-squares fitting algorithms of the NIST algorithm testing system[J]. Journal of Research of the National Institute of Standards & Technology, 1998, 103(6):633-641.
    [12]
    张连伟. 散乱点云三维表面重建技术研究[D]. 长沙:国防科学技术大学, 2009.
    [13]
    朱德海.点云库PCL学习教程[M].北京:北京航空航天大学出版社,2012.
    [14]
    李天烁, 王晏民, 胡春梅. 基于激光反射强度的点云自动配准研究[J]. 测绘通报, 2014(增刊2):143-145.
  • Related Articles

    [1]Lou Minghua, Zhang Huiru, Lei Xiangdong, Bai Chao, Yang Tonghui. Relationship model between stand mean height and mean DBH for natural Quercus spp. broadleaved mixed stands[J]. Journal of Beijing Forestry University, 2020, 42(9): 37-50. DOI: 10.12171/j.1000-1522.20190463
    [2]PENG Mi, GUO Qing-xi.. Minimum area of the community spatial structure of broadleaf-Korean pine forest in Shengshan Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(12): 21-27. DOI: 10.13332/j.1000-1522.20150519
    [3]CAO Shan, JIANG Lu-yao, LI Li-hong, YAO Xiao-yun, ZHANG Qiang, HAN Jing-yi, WANG Ying, LI Hui, LU Hai.. Cloning and enzymatic analysis of medium-chain acyl coenzyme A synthetase in Populus trichocarpa.[J]. Journal of Beijing Forestry University, 2016, 38(7): 9-15. DOI: 10.13332/j.1000-1522.20160121
    [4]PAN Chen, REN Bai-guang, GAI Ying. Method of enzymatic synthesis and purification of p-coumaroyl-CoA[J]. Journal of Beijing Forestry University, 2016, 38(3): 120-124. DOI: 10.13332/j.1000-1522.20150366
    [5]SHI Jun-na, LIU Mei-qin, LIU Jie, CHEN Yu-zhen, LU Cun-fu. Sequence analysis and expression pattern of AmSTZF encoding an A20/AN1 zinc finger protein in Ammopiptanthus mongolicus.[J]. Journal of Beijing Forestry University, 2012, 34(2): 103-108.
    [6]FANG Lu-ming, CHAI Hong-ling, TANG Li-hua, XU Ai-jun. An extraction algorithm of a DEM based video visualization domain.[J]. Journal of Beijing Forestry University, 2010, 32(3): 27-32.
    [7]GAO Lin, GU Hong-bo, LI Wen-bin, WANG Nai-kang, WU Xiao-lan. Intelligent control of seeding system based on SPCE061A[J]. Journal of Beijing Forestry University, 2009, 31(5): 126-130.
    [8]WANG Ji-jun, , PEI Tie-fan, WANG An-zhi, GUAN De-xin, JIN Chang-jie. Changes in the mean maximum and minimum temperatures in Changbai Mountain, northeastern China in the past 50 years.[J]. Journal of Beijing Forestry University, 2009, 31(2): 50-57.
    [9]XU Ji-liang, CUI Guo-fa, LI Zhong. Approaches for setting the minimum area of nature reserve[J]. Journal of Beijing Forestry University, 2006, 28(5): 129-132.
    [10]HUI Gang-ying, XU Hai, HU Yan-bo. Model for forecasting the distribution of the minimum tree-to-tree distances[J]. Journal of Beijing Forestry University, 2006, 28(5): 18-21.
  • Cited by

    Periodical cited type(6)

    1. 崔恒久,曾教科,李雯,黄海杰,彭世清,郭冬,蒲金基,周永凯,李辉亮. 腰果CBF基因家族的鉴定及响应冷胁迫的表达模式. 热带作物学报. 2024(03): 473-480 .
    2. 韩立群,张捷,赵钰,梅闯,马凯. 新疆野生核桃JfDREB1A基因的克隆与原核表达分析. 西北农业学报. 2023(07): 1050-1057 .
    3. 赵淑玲,王永斌,蹇小勇,郭兴贵,朱福民,杨静静,霍发喜. 平欧杂交榛研究进展. 现代化农业. 2023(09): 46-49 .
    4. 夏蕴,巢建国,谷巍,盛业龙,王玉卓,惠西珂,王凯,王圆圆. 倒春寒胁迫与恢复对茅苍术生长、生理及关键酶基因的影响. 中成药. 2020(08): 2187-2191 .
    5. 宋静武,彭磊. 核桃CBF基因在低温胁迫中表达. 湖北林业科技. 2019(02): 7-13 .
    6. 刘晓丹,王霞,杨祥波. 非生物胁迫下山腊梅CpCBF基因的表达模式分析. 黑龙江农业科学. 2017(12): 18-21 .

    Other cited types(3)

Catalog

    Article views (1915) PDF downloads (35) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return