• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
FAN Li, LIU Jin-hao, HUANG Qing-qing. Point cloud segmentation algorithm based on feature fusion used for understory environments[J]. Journal of Beijing Forestry University, 2016, 38(5): 133-138. DOI: 10.13332/j.1000-1522.20150332
Citation: FAN Li, LIU Jin-hao, HUANG Qing-qing. Point cloud segmentation algorithm based on feature fusion used for understory environments[J]. Journal of Beijing Forestry University, 2016, 38(5): 133-138. DOI: 10.13332/j.1000-1522.20150332

Point cloud segmentation algorithm based on feature fusion used for understory environments

More Information
  • Received Date: September 12, 2015
  • Revised Date: September 12, 2015
  • Published Date: May 30, 2016
  • Aimed at the complexity of geometric features of understory environments and the deficiency of edge detection based method, region growing based method and clustering feature based method, we propose a new point cloud segmentation algorithm based on feature fusion. The 3D data set acquired from Beijing Forestry University using a FARO laser scanner consists of 1166302 points after removing outliers and filtering. The data set has four targets, i.e., tree, ground, stone and person. Point cloud segmentation can be achieved via fusing normal vector and laser reflection intensity of each point. The laser reflection intensity values can be obtained from point cloud data set directly, and normal vector should be calculated based on the Plane PCA algorithm. Also, it is necessary to create kd-tree data structure and perform k-NN search during the calculation of normal vector. Segmentation is realized after fusing the advantages of normal vector and laser reflection intensity and calculating synthetical difference degree between query points and neighborhood points. Comparing the segmentation results from point cloud segmentation algorithms based on feature fusion, normal vector and laser reflection intensity, the method based on feature fusion overcomes the problem of data deficiency that the other two methods suffer.
  • [1]
    NOVAK L M, BURL M C. Optimal speckle reduction in polarimetric SAR imagery[J]. Aerospace & Electronic Systems IEEE Transactions, 1990, 26(2):293-305.
    [1]
    ZHANG Q. Research of visual recognition algoriyhm for service robot based on PCL[D].Hefei: University of Science and Technology of China, 2014.
    [2]
    LIU Y F. Theory and method on point cloud data spatial management based on kd-tree[D]. Changsha: Central South University, 2009.
    [2]
    GOZE S, LOPES A. A MMSE speckle filter for full resolution SAR polarimetric data[J]. Journal of Electromagnetic Waves & Applications, 1993, 7(7):717-737.
    [3]
    HOFFMAN R, JAIN A K. Segmentation and classification of range images[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1987, 9(5):608-620.
    [3]
    ZHANG L W. Research on the technology of the three-dimensional surface reconstruction from scattered point cloud[D].Changsha: Graduate School of National University of Defense Technology,2009.
    [4]
    HUANG J, MENQ C H. Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points[J]. Robotics & Automation IEEE Transactions, 2001, 17(3):268-279.
    [4]
    ZHU D H. Point cloud library(PCL) learning tutorial[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2012.
    [5]
    LI T S, WANG Y M, HU C M. The study of point cloud registration automatically based on laser reflection intensity[J]. Bulletin of Surveying and Mapping, 2014(Suppl. 2):143-145.
    [5]
    JEAN K, MINSOO S, SUCHENDRA M B. A multilayer self-organizing feature map for range image segmentation[J]. Neural Networks, 1995, 8(1): 67-86.
    [6]
    PU S, VOSSELMAN G. Knowledge based reconstruction of building models from terrestrial laser scanning data[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2009, 64(6):575-584.
    [7]
    KOH J, SUK M, BHANDARKAR S M. A self-organizing neural network for hierarchical range image segmentation[C]//IEEE International Conference on Robotics & Automation. Atlanta, GA: IEEE, 1993:758-763.
    [8]
    张强. 基于点云库的服务机器人视觉识别算法研究[D]. 合肥:中国科学技术大学, 2014.
    [9]
    刘艳丰. 基于kd-tree的点云数据空间管理理论与方法[D]. 长沙:中南大学, 2009.
    [10]
    KLASING K, ALTHOFF D, WOLLHERR D, et al. Comparison of surface normal estimation methods for range sensing applications[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Kobe, Japan:IEEE, 2009:12-17.
    [11]
    SHAKARJI C M. Least-squares fitting algorithms of the NIST algorithm testing system[J]. Journal of Research of the National Institute of Standards & Technology, 1998, 103(6):633-641.
    [12]
    张连伟. 散乱点云三维表面重建技术研究[D]. 长沙:国防科学技术大学, 2009.
    [13]
    朱德海.点云库PCL学习教程[M].北京:北京航空航天大学出版社,2012.
    [14]
    李天烁, 王晏民, 胡春梅. 基于激光反射强度的点云自动配准研究[J]. 测绘通报, 2014(增刊2):143-145.
  • Cited by

    Periodical cited type(4)

    1. 李吉玫,张毓涛,张云云. 天山北坡融雪期林地、草地、裸地积雪特性及其影响因素分析. 灌溉排水学报. 2021(01): 106-114 .
    2. 张云云,张毓涛,师庆东,李吉玫,芦建江. 天山北坡中段草地、林地积雪消融过程的定量化分析. 水土保持学报. 2019(03): 108-114 .
    3. 郑思嘉,于晓菲,栾金花,邹元春,王国平,丁珊珊. 季节性冻土区积雪的生态效应. 土壤与作物. 2018(04): 389-398 .
    4. 曹志,范昊明. 我国东北低山区不同坡位积雪特性研究. 冰川冻土. 2017(05): 989-996 .

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return