• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
FAN Li, LIU Jin-hao, HUANG Qing-qing. Point cloud segmentation algorithm based on feature fusion used for understory environments[J]. Journal of Beijing Forestry University, 2016, 38(5): 133-138. DOI: 10.13332/j.1000-1522.20150332
Citation: FAN Li, LIU Jin-hao, HUANG Qing-qing. Point cloud segmentation algorithm based on feature fusion used for understory environments[J]. Journal of Beijing Forestry University, 2016, 38(5): 133-138. DOI: 10.13332/j.1000-1522.20150332

Point cloud segmentation algorithm based on feature fusion used for understory environments

More Information
  • Received Date: September 12, 2015
  • Revised Date: September 12, 2015
  • Published Date: May 30, 2016
  • Aimed at the complexity of geometric features of understory environments and the deficiency of edge detection based method, region growing based method and clustering feature based method, we propose a new point cloud segmentation algorithm based on feature fusion. The 3D data set acquired from Beijing Forestry University using a FARO laser scanner consists of 1166302 points after removing outliers and filtering. The data set has four targets, i.e., tree, ground, stone and person. Point cloud segmentation can be achieved via fusing normal vector and laser reflection intensity of each point. The laser reflection intensity values can be obtained from point cloud data set directly, and normal vector should be calculated based on the Plane PCA algorithm. Also, it is necessary to create kd-tree data structure and perform k-NN search during the calculation of normal vector. Segmentation is realized after fusing the advantages of normal vector and laser reflection intensity and calculating synthetical difference degree between query points and neighborhood points. Comparing the segmentation results from point cloud segmentation algorithms based on feature fusion, normal vector and laser reflection intensity, the method based on feature fusion overcomes the problem of data deficiency that the other two methods suffer.
  • [1]
    NOVAK L M, BURL M C. Optimal speckle reduction in polarimetric SAR imagery[J]. Aerospace & Electronic Systems IEEE Transactions, 1990, 26(2):293-305.
    [1]
    ZHANG Q. Research of visual recognition algoriyhm for service robot based on PCL[D].Hefei: University of Science and Technology of China, 2014.
    [2]
    LIU Y F. Theory and method on point cloud data spatial management based on kd-tree[D]. Changsha: Central South University, 2009.
    [2]
    GOZE S, LOPES A. A MMSE speckle filter for full resolution SAR polarimetric data[J]. Journal of Electromagnetic Waves & Applications, 1993, 7(7):717-737.
    [3]
    HOFFMAN R, JAIN A K. Segmentation and classification of range images[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1987, 9(5):608-620.
    [3]
    ZHANG L W. Research on the technology of the three-dimensional surface reconstruction from scattered point cloud[D].Changsha: Graduate School of National University of Defense Technology,2009.
    [4]
    HUANG J, MENQ C H. Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points[J]. Robotics & Automation IEEE Transactions, 2001, 17(3):268-279.
    [4]
    ZHU D H. Point cloud library(PCL) learning tutorial[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2012.
    [5]
    LI T S, WANG Y M, HU C M. The study of point cloud registration automatically based on laser reflection intensity[J]. Bulletin of Surveying and Mapping, 2014(Suppl. 2):143-145.
    [5]
    JEAN K, MINSOO S, SUCHENDRA M B. A multilayer self-organizing feature map for range image segmentation[J]. Neural Networks, 1995, 8(1): 67-86.
    [6]
    PU S, VOSSELMAN G. Knowledge based reconstruction of building models from terrestrial laser scanning data[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2009, 64(6):575-584.
    [7]
    KOH J, SUK M, BHANDARKAR S M. A self-organizing neural network for hierarchical range image segmentation[C]//IEEE International Conference on Robotics & Automation. Atlanta, GA: IEEE, 1993:758-763.
    [8]
    张强. 基于点云库的服务机器人视觉识别算法研究[D]. 合肥:中国科学技术大学, 2014.
    [9]
    刘艳丰. 基于kd-tree的点云数据空间管理理论与方法[D]. 长沙:中南大学, 2009.
    [10]
    KLASING K, ALTHOFF D, WOLLHERR D, et al. Comparison of surface normal estimation methods for range sensing applications[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Kobe, Japan:IEEE, 2009:12-17.
    [11]
    SHAKARJI C M. Least-squares fitting algorithms of the NIST algorithm testing system[J]. Journal of Research of the National Institute of Standards & Technology, 1998, 103(6):633-641.
    [12]
    张连伟. 散乱点云三维表面重建技术研究[D]. 长沙:国防科学技术大学, 2009.
    [13]
    朱德海.点云库PCL学习教程[M].北京:北京航空航天大学出版社,2012.
    [14]
    李天烁, 王晏民, 胡春梅. 基于激光反射强度的点云自动配准研究[J]. 测绘通报, 2014(增刊2):143-145.
  • Related Articles

    [1]Chen Jun, Sun Yuan, Liu Chenxi, Yao Ruihan, Yu Jiahui, Cao Fuliang, Yu Pengfei. Volume modeling and yield for Liriodendron tulipifera based on terrestrial laser scan data[J]. Journal of Beijing Forestry University, 2023, 45(6): 33-42. DOI: 10.12171/j.1000-1522.20210296
    [2]Yu Ying, Liu Min, Fan Wenyi, Wei Tiantian, Cheng Tenghui, Jiang Bo, Zhang Yue. Scale conversion of photochemical reflectance index based on PROSPECT and 4-scale models[J]. Journal of Beijing Forestry University, 2020, 42(10): 27-35. DOI: 10.12171/j.1000-1522.20190190
    [3]Yang Ming, Zhang Xiaoli, Huo Langning, Gao Linghan. Improved octree filtering algorithm of airborne LiDAR data in forest environment[J]. Journal of Beijing Forestry University, 2018, 40(11): 102-111. DOI: 10.13332/j.1000-1522.20180130
    [4]Guan Huiwen, Dong Xibin. Influence of thinning intensity on canopy structure and light environment inside Larix gmelinii secondary forest[J]. Journal of Beijing Forestry University, 2018, 40(10): 11-23. DOI: 10.13332/j.1000-1522.20180021
    [5]WANG Yao, ZHANG Zhi-yu, NI Wen-jian, LIU Jian-li, ZHANG Da-feng. Comparison of filter algorithms and combination analysis for DEM extracting based on airborne laser scanning point clouds[J]. Journal of Beijing Forestry University, 2017, 39(12): 25-35. DOI: 10.13332/j.1000-1522.20170300
    [6]XING Hai-tao, LU Yuan-chang, LIU Xian-zhao, WANG Xiao-ming, JIA Hong-yan, ZENG Ji. Competition intensity of Pinus massoniana stand based on close-to-nature management.[J]. Journal of Beijing Forestry University, 2016, 38(9): 42-54. DOI: 10.13332/j.1000-1522.20160023
    [7]ZHAO Hong-gang, LE Lei, LIU Ming-li, WU Jun-hua, LIU Yan-long. Laser cutting preparation technology of solid wood parquet laminate flooring[J]. Journal of Beijing Forestry University, 2016, 38(6): 110-115. DOI: 10.13332/j.1000-1522.20150380
    [8]ZHANG Wen-chao, CAO Yuan, WU Jia-ye, HAO Rui-zhi, JING Yan-ping. Laser microdissection system of poplar anther.[J]. Journal of Beijing Forestry University, 2013, 35(1): 139-143.
    [9]YIN Ya-fang, Nagao Hirofumi, Kato Hideo, Ido Hirofumi. Application of a laser measurement method in measuring the modulus of elasticity in tension parallel to grain of Cryptomeria japonica D.Don structural lumber[J]. Journal of Beijing Forestry University, 2007, 29(6): 172-175. DOI: 10.13332/j.1000-1522.2007.06.037
    [10]LI Yun-kai, YANG Pei-ling, TIAN Ying-jie, REN Shu-mei, ZHAO Huan-xun. Application of Support Vector Regression method in predicting soil erosion intensity of small watershed in the insensitive erosion areas[J]. Journal of Beijing Forestry University, 2007, 29(3): 93-98. DOI: 10.13332/j.1000-1522.2007.03.015
  • Cited by

    Periodical cited type(6)

    1. 林秀云,孙圆,刘晨曦,姚睿涵,周春国,曹林,曹福亮. 依据地面激光扫描数据的杉木材积建模与造材. 东北林业大学学报. 2022(01): 33-39 .
    2. 李沛婷,赵庆展,田文忠,马永建. 结合无人机载LiDAR点云法向量的K-means++聚类精简. 国土资源遥感. 2020(02): 103-110 .
    3. 程子阳,任国全,张银. 扫描线段特征用于三维点云地面分割. 光电工程. 2019(07): 111-120 .
    4. 蔡越,徐文兵,梁丹,邓愫愫,李翀. 基于激光回波强度判别毛竹年龄. 中国激光. 2018(01): 272-280 .
    5. 曾碧,黄文. 一种融合多特征聚类集成的室内点云分割方法. 计算机工程. 2018(03): 281-286 .
    6. 田青华,白瑞林,李杜. 基于改进欧氏聚类的散乱工件点云分割. 激光与光电子学进展. 2017(12): 316-324 .

    Other cited types(7)

Catalog

    Article views (1915) PDF downloads (35) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return