Heat transfer in the process of pyrolysis of garden waste
-
Graphical Abstract
-
Abstract
Temperature has a significant effect on pyrolysis and determines the components of pyrolysis products. The distribution of pyrolysate temperature, however, relies on the heat transfer characteristics during the pyrolysis process. To study the heat transfer characteristics during the pyrolysis process of garden waste, the temperature distribution and variation in garden waste were measured. The software ANSYS was taken to simulate the heat transfer process, and the heat transfer model was established by comparative analysis of the experimental data and the simulation value. The results indicated that the heat transfer ability increased along with ascending pyrolysis temperatures and decreased along with the increase of the amount of garden waste; the heat transfer ability was proportional to temperature gradient. Simultaneously, the relationship between the temperature on flask lateral wall and the height of garden waste powder, and the relationship between the temperature above garden waste powder and time were established based on the phenomenon that the temperature load on the reaction flask wall and the convective heat transfer load on the garden waste powder surface were not constant. This study, to a certain extent, will provide theoretical guidance to garden waste pyrolysis.
-
-