• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WU Jing, CHENG Fang-yun, PANG Li-zheng, ZHONG Yuan, CAI Chang-fu.. Association analysis of phenotypic traits with SSR markers in Paeonia rockii.[J]. Journal of Beijing Forestry University, 2016, 38(8): 80-87. DOI: 10.13332/j.1000-1522.20150377
Citation: WU Jing, CHENG Fang-yun, PANG Li-zheng, ZHONG Yuan, CAI Chang-fu.. Association analysis of phenotypic traits with SSR markers in Paeonia rockii.[J]. Journal of Beijing Forestry University, 2016, 38(8): 80-87. DOI: 10.13332/j.1000-1522.20150377

Association analysis of phenotypic traits with SSR markers in Paeonia rockii.

More Information
  • Received Date: November 01, 2015
  • Published Date: August 30, 2016
  • In order to provide a genetic basis for studies on complex quantitative traits and for molecular marker assisted breeding of tree peony, the genetic diversity of Paeonia rockii was determined by using SSR markers and their association with important ornamental traits was detected. A total of 11 simple sequence repeat (SSR) markers were screened for polymorphism among 99 accessions, and then the genetic diversity of these materials was detected. Through analyzing population structure, association analysis between SSR markers and 32 horticultural traits were performed using TASSEL2.1 GLM (general linear model) programs. The results showed that a total of 94 alleles were identified with 8.5 alleles per locus. The polymorphism information content (PIC) value ranged from 0.146 to 0.850, with an average of 0.593. The genetic diversity ranged from 0.152 to 0.862, with the mean of 0.630. Population structure analysis showed that 99 Paeonia rockii materials were composed of 3 subpopulations. Association analysis found that there were 5 SSR markers associated with 6 horticultural traits, and the rate of explanation on the phenotype of related marker ranged from 30.4% to 55.8%. Among them, FJ024285 and FJ024294 were associated with plant height; FE528073 was associated with top-leaf length, stigma color and disk color; FJ024287 was associated with length ratio of petiole and compound leaf; EU678295 was associated with blotch size. An abundant genetic variation but week population structure was detected in Paeonia rockii accessions, indicating that the association population is representative and suitable for further association analysis of quantitative traits in tree peony. Association analysis is a promising approach to find markers tightly linked with phenotypic traits, and the markers obtained in the present study provide foundation for molecular marker assisted breeding.
  • [1]
    WU J, CHENG F Y, ZHANG D.Utilizing ‘High Noon’ in the crossing breeding of tree peonies and early identification of some hybrids by AFLP markers[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(8): 1551-1557.
    [1]
    CHENG F Y. Advances in the breeding of tree peonies and a cultivar system for the cultivar group[J]. International Journal of Plant Breeding, 2007, 1(2): 89-104.
    [2]
    YUAN J H, CHENG F Y, ZHOU S L. Hybrid origin of Paeonia × yananensis revealed by microsatellite markers, chloroplast gene sequences, and morphological characteristics[J]. International Journal of Plant Sciences, 2010, 171(4): 409-420.
    [2]
    LI R W, WANG C, DAI S L, et al. The association analysis of phenotypic traits with SRAP markers in Chrysanthemum[J]. Scientia Agricultura Sinica, 2012, 45(7): 1355-1364.
    [3]
    YUAN J H, CHENG F Y, ZHOU S L. Genetic structure of the tree peony (Paeonia rockii) and the Qinling Mountains as a geographic barrier driving the fragmentation of a large population[J]. PloS One, 2012, 7(4): e34955.
    [3]
    LIU H M, ZHU Y T, CHE D D,et al. Association analysis of ornamental traits with RAPD markers in 18 portion materials of Spiraea L.[J]. Acta Horticulturae Sinica, 2010, 37(7): 1125-1131.
    [4]
    CHENG F Y, LI J J, CHEN D Z, et al. Purple peony in China [M]. Beijing:China Forestry Publishing House, 2005: 77-84.
    [4]
    HAN X Y, WANG L S, SHU Q Y, et al. Molecular characterization of tree peony germplasm using sequence-related amplified polymorphism markers[J]. Biochemical Genetics, 2008, 46(3-4): 162-179.
    [5]
    PANG L Z, CHENG F Y, ZHONG Y, et al. Phenotypic analysis of association population for flare tree peony[J]. Journal of Beijing Forestry University, 2012, 34(6): 115-120.
    [5]
    ZHANG J J, SHU Q Y, LIU Z A, et al. Two EST-derived marker systems for cultivar identification in tree peony[J]. Plant Cell Reports, 2012, 31(2): 299-310.
    [6]
    WU J, CAI C F, CHENG F Y, et al. Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences[J]. Molecular Breeding, 2014, 34(4): 1853-1866.
    [6]
    YUAN J H. Studies on the origin of Paeonia rockii and P. yananensis[D]. Beijing: Beijing Forestry University, 2010.
    [7]
    LU H, ZHANG D, ZHANG L J, et al. Association analysis of five agronomic traits with SSR markers in Flammulina velutipes germplasm[J]. Journal of Agricultural Biotechnology, 2015, 23(1): 96-106.
    [7]
    YU H P, CHENG F Y, ZHONG Y, et al. Development of simple sequence repeat (SSR) markers from Paeonia ostii to study the genetic relationships among tree peonies (Paeoniaceae)[J]. Scientia Horticulturae, 2013, 164: 58-64.
    [8]
    GAO Y, LUO S X, WANG Y H, et al. Association analysis of bolting and flowering time with SSR and InDel markers in Chinese cabbage[J]. Acta Horticulturae Sinica, 2012, 39(6): 1081-1089.
    [8]
    吴静, 成仿云, 张栋.‘正午’牡丹的杂交利用及部分杂种AFLP鉴定[J]. 西北植物学报, 2013, 33(8): 1551-1557.
    [9]
    HAO Q, LIU Z A, SHU Q Y, et al. Studies on Paeonia cultivars and hybrids identification based on SRAP analysis[J]. Hereditas, 2008, 145(1): 38-47.
    [10]
    FLINT-GARCIA S A, THORNSBERRY J M, BUCKLER E S. Structure of linkage disequilibrium in plants[J]. Annual Review of Plant Biology, 2003, 54: 357-374.
    [11]
    THORNSBERRY J M, GOODMAN M M, DOEBLEY J, et al. Dwarf polymorphisms associate with variation in flowering time[J]. Nature Genetics, 2001, 28(3): 286-289.
    [12]
    BORDES J, GOUDEMAND E, DUCHALAIS L, et al. Genome-wide association mapping of three important traits using bread wheat elite breeding populations[J]. Molecular Breeding, 2014, 33(4): 755-768.
    [13]
    EDAE E A, BYRNE P F, HALEY S D, et al. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes[J]. Theoretical and Applied Genetics, 2014, 127(4): 791-807.
    [14]
    SUKUMARAN S, DREISIGACKER S, LOPES M, et al. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments[J]. Theoretical and Applied Genetics, 2015, 128(2): 353-363.
    [15]
    WANG C, YANG Y, YUAN X, et al. Genome-wide association study of blast resistance in indica rice[J]. BMC Plant Biology, 2014, 14(1): 311.
    [16]
    GOWDA M, DAS B, MAKUMBI D, et al. Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm[J]. Theoretical and Applied Genetics, 2015, 128(10): 1957-1968.
    [17]
    PACE J, GARDNER C, ROMAY C, et al. Genome-wide association analysis of seedling root development in maize (Zea mays L.)[J]. BMC Genomics, 2015, 16(1): 47.
    [18]
    SUWARNO W B, PIXLEY K V, PALACIOS-ROJAS N, et al. Genome-wide association analysis reveals new targets for carotenoid biofortification in maize[J]. Theoretical and Applied Genetics, 2015, 128(5): 851-864.
    [19]
    WEN Z, TAN R, YUAN J, et al. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean[J]. BMC Genomics, 2014, 15(1): 809.
    [20]
    ZHANG J, SONG Q, CREGAN P B, et al. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm[J]. BMC Genomics, 2015, 16(1): 217.
    [21]
    DU Q, PAN W, XU B, et al. Polymorphic simple sequence repeat (SSR) loci within cellulose synthase (PtoCesA) genes are associated with growth and wood properties in Populus tomentosa[J]. New Phytologist, 2013, 197(3): 763-776.
    [22]
    PORTH I, KLAPTE J, SKYBA O, et al. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms[J]. New Phytologist, 2013, 200(3): 710-726.
    [23]
    HUSSEY S G, MIZRACHI E, GROOVER A, et al. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem[J]. BMC Plant Biology, 2015, 15(1): 117.
    [24]
    ECKERT A J, WEGRZYN J L, CUMBIE W P, et al. Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome[J]. New Phytologist, 2012, 193(4): 890-902.
    [25]
    PALLE S R, SEEVE C M, ECKERT A J, et al. Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms[J]. Tree Physiology, 2013, 33(7): 763-774.
    [26]
    GAWENDA I, SCHRDER-LORENZ A, DEBENER T. Markers for ornamental traits in Phalaenopsis orchids: population structure, linkage disequilibrium and association mapping[J]. Molecular Breeding, 2012, 30(1): 305-316.
    [27]
    李仁伟, 王 晨, 戴思兰, 等. 菊花品种表型性状与SRAP分子标记的关联分析[J]. 中国农业科学, 2012, 45(7): 1355-1364.
    [28]
    刘慧民, 朱玉涛, 车代弟, 等. 绣线菊18份材料观赏性状与RAPD标记的关联分析[J]. 园艺学报, 2010, 37(7): 1125-1131.
    [29]
    成仿云,李嘉珏,陈德忠, 等. 中国紫斑牡丹[M]. 北京:中国林业出版社, 2005: 77-84.
    [30]
    庞利铮, 成仿云, 钟原, 等. 紫斑牡丹关联分析群体的表型分析[J]. 北京林业大学学报, 2012, 34(6): 115-120.
    [31]
    HOMOLKA A, BERENYI M, BURG K, et al. Microsatellite markers in the tree peony, Paeonia suffruticosa (Paeoniaceae) [J]. American Journal of Botany, 2010, 97(6): e42-e44.
    [32]
    HOU X G, GUO D L, CHENG S P, et al. Development of thirty new polymorphic microsatellite primers for Paeonia suffruticosa [J]. Biologia Plantarum, 2011, 55(4): 708-710.
    [33]
    HOU X G, GUO D L, WANG J. Development and characterization of EST-SSR markers in Paeonia suffruticosa (Paeoniaceae) [J]. American Journal of Botany, 2011,98(11): e303-e305
    [34]
    LI L, CHENG F, ZANG Q. Microsatellite markers for the Chinese herbaceous peony Paeonia lactiflora (Paeoniaceae) [J]. American Journal of Botany, 2011, 98(2): e16-e18.
    [35]
    SUN J, YUAN J, WANG B, et al. Development and characterization of 10 microsatellite loci in Paeonia lactiflora (Paeoniaceae) [J]. American Journal of Botany, 2011, 98(9): e242-e243.
    [36]
    LIU K, MUSE S V. PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129.
    [37]
    PRITCHARD J K,STEPHENS M,DONNELLY P. Inference of population structure from multilocus genotype data [J]. Genetics, 2000, 155: 945-959.
    [38]
    EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study [J]. Molecular Ecology, 2005, 14(8): 2611-2620.
    [39]
    BRADBURY P J, ZHANG Z, KROON D E, et al. TASSEL: software for association mapping of complex traits in diverse samples [J]. Bioinformatics, 2007, 23(19): 2633-2635.
    [40]
    袁军辉. 紫斑牡丹及延安牡丹起源研究[D].北京: 北京林业大学, 2010.
    [41]
    BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3):314-331.
    [42]
    陆欢, 张丹, 章炉军, 等. 金针菇种质资源5个农艺性状与SSR 标记的关联分析[J]. 农业生物技术学报, 2015, 23(1): 96-106.
    [43]
    PALLE S R, SEEVE C M, ECKERT A J, et al. Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms[J]. Tree Physiology, 2013, 33(7): 763-774.
    [44]
    HANSEN M, KRAFT T, GANESTAM S, et al. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers[J]. Genetics Research, 2001, 77(1): 61-66.
    [45]
    高颖, 罗双霞, 王彦华, 等. 大白菜抽薹开花时间与SSR和InDel标记的关联分析[J]. 园艺学报, 2012, 39(6): 1081-1089.
    [46]
    ARANZANA M J, KIM S, ZHAO K, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. PLoS Genetics, 2005, 1(5): 531-539.
  • Cited by

    Periodical cited type(5)

    1. 郎博帅,刘叶凡,韩阳媚,欧阳嗣航,李玉灵,程顺. 林内色彩斑块分布格局对秋季生态景观林美景度的影响——以塞罕坝机械林场为例. 林业与生态科学. 2023(01): 98-105 .
    2. 孙广鹏,章志都,刘海轩,朱济友,徐程扬. 基于树冠生长和空间竞争指数的油松风景林经营密度表编制. 中南林业科技大学学报. 2022(02): 17-26+54 .
    3. 刘格言,王与茜,黄尹姝,盛志祎,黄笑,陈其兵,江明艳. 西南地区风景游憩竹林林内景观评价与改造策略研究. 竹子学报. 2020(02): 66-73 .
    4. 崔义,刘海轩,吕娇,吴鞠,许丽娟,韦柳端,余玉磊,徐程扬. 城市森林林内景观质量定量通用判别技术研究. 北京林业大学学报. 2020(12): 9-23 . 本站查看
    5. 金雅庆,张瀚元. 浅谈城镇化建设中景观色彩设计的布局形式. 北方建筑. 2019(01): 29-32 .

    Other cited types(6)

Catalog

    Article views (2032) PDF downloads (53) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return