• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHONG Zhao-liang, WANG Wen-jie, ZHANG Wen-tian, WANG Qiong. Compositional variation of glomalin-related soil protein in different forest stands and farmland[J]. Journal of Beijing Forestry University, 2016, 38(4): 107-115. DOI: 10.13332/j.1000-1522.20150399
Citation: ZHONG Zhao-liang, WANG Wen-jie, ZHANG Wen-tian, WANG Qiong. Compositional variation of glomalin-related soil protein in different forest stands and farmland[J]. Journal of Beijing Forestry University, 2016, 38(4): 107-115. DOI: 10.13332/j.1000-1522.20150399

Compositional variation of glomalin-related soil protein in different forest stands and farmland

More Information
  • Received Date: November 05, 2015
  • Published Date: April 29, 2016
  • Glomalin-related soil protein (GRSP), a glycoprotein produced by the hyphae of arbuscular mycorrhizal fungi, is well known for its significant ecological role in soil function, while lack of cognition of GRSP chemical structural characteristics has largely restricted the ecological status and application prospect of GRSP. In this study, five tree species and adjacent farmland have been investigated to uncover the structural characteristic of GRSP and the inter-specific differences through a variety of technical methods. We found that GRSP contained five functional groups, i.e. O—H and N—H stretching, C—H stretching, CO and COO— stretching,symmetric COO— stretching, C—H bending, C—O and Si—O—Si stretching. Ultraviolet spectrum showed that the peak wavelengh of GRSP was 225-248 nm and OD value was 0.9-2.0. XRD data showed that GRSP contained seven mineral substances (quartz, montmorillonite, illite, plagioclase, illite &, montmorillonite mixed-layer, and two unrecognizable substances), and their relative crystallinity was quite low with average grain size 25.83, 17.93, 14.50, 21.45, 28.45, 28.10 and 17.40 nm, respectively. Moreover, XPS data found 11 elements of C1s, Al2p, O1s, Si2p, P2p, Ca2p, K2p, N1s, Fe2p, Mg1s and Na1s in GRSP, and their average percentages were 28.9%, 7.0%, 43.4%, 9.8%, 0.4%, 1.0%, 0.6%, 1.4%, 2.1%, 0.7% and 7.8%, respectively. Tree species and farmland practices strongly affected GRSP composition. The biggest difference of function group was C—H stretching between Mongolian oak and birch (5.5 fold), while the minimum difference was O—H and N—H stretching between Manchurian ash and birch(1.3 fold). Juglans mandshurica had the highest Uv-OD values. Mineral types of GRSP were also different. Manchurian ash (Fraxinus mandshurica) and Mongolian oak (Quercus mongolica) forests contained plagioclase, illite &, montmorillonite mixed-layer, and two unrecognizable substances, and more soil mineral substances were found in GRSP from other tree species and farmland. The 5.2-fold difference of quartz grain size was found in different vegetations, while plagioclase had the minimum inter-species differences(17%). Relative crystallinity of montmorillonite in larch plantation was 5.1 fold higher than that in Manchurian ash, while very smaller differences in two unrecognizable substances (4% variation of b substance) were found between Manchurian ash and Mongolian oak forests. C1s, O1s, Si2p, N1s and Na1s could be found in GRSP from all forests and farmland, and their variation was 1.1-31.6 fold. Our study confirms that GRSP composition varies greatly among different vegetational types, and soil minerals could also affect the composition owing to variable soil minerals in GRSP. Clarification of the influencing mechanism of GRSP through revealing the GRSP compositional characteristics in this study is helpful for restoring soil ecological functions of farmland and forest soils in this region.
  • [1]
    WRIGHT S, FRANKE-SNYDER M, MORTON J, et al. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots[J]. Plant and Soil ,1996,181(2): 193-203.
    [1]
    LI T, ZHAO Z W. Advances in researches on glomalin produced by arbuscular mycorrhizal fungi [J]. Chinese Journal of Ecology, 2005, 24(9):1080-1084.
    [2]
    YANG M Q, FENG G, BAI D S, et al. Influence of VA mycorrhiza of corn absorb the phosphate fertilizer[J]. Soil Fertilizer, 1992(4): 36-41.
    [2]
    李涛, 赵之伟. 丛枝菌根真菌产球囊霉素研究进展[J].生态学杂志,2005, 24(9):1080-1084.
    [3]
    RILLIG M C, WRIGHT S F, NICHOLS K A, et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools intropical forest soils[J]. Plant and Soil, 2001, 233(2): 167-177.
    [3]
    GUAN G F, LI H, ZHENG H,et al. Research on key technologies of land security of commodity grain base in northeast China [J]. Territory &, Natural Resources Study, 2015(2):37-39.
    [4]
    ZHANG Z M. Research on countermeasures of Heilongjiang province black-soil cropland protection[D]. Urumchi: Xinjiang Agricultural University, 2009.
    [4]
    JASTROW J D, MILLER R M, LUSSENHOP J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie[J]. Soil Biology and Biochemistry, 1998, 30(7):905-916.
    [5]
    杨茂秋, 冯固, 白灯莎, 等. VA菌根对玉米吸收利用磷肥的影响[J]. 土壤肥料, 1992(4): 36-41.
    [5]
    WANG B, LU S W. Evaluation of economic forest ecosystem services in China[J]. Chinese Journal of Applied Ecology, 2009,20(2):417-425.
    [6]
    关国锋,李宏,郑浩,等.东北商品粮基地土地保障关键技术研究:技术需求与研究框架[J].国土与自然资源研究,2015(2):37-39.
    [6]
    WANG B, LU S W, YOU W Z, et al. Evaluation of forest ecosystem services value in Liaoning Province[J]. Chinese Journal of Applied Ecology, 2010,21(7):1792-1798.
    [7]
    张中美. 黑龙江省黑土耕地保护对策研究[D].乌鲁木齐:新疆农业大学,2009.
    [7]
    WANG C Y, FENG H Y, YANG Z F, et al.Glomalin-related soil protein distribution and its environmental affecting factors in the Northeast Inner Mongolia[J]. Arid Zone Research, 2013, 30(1): 22-28.
    [8]
    TANG H L, LIU L, WANG L, et al. Effect of land use type on profile distribution of glomalin [J].Chinese Journal of Eco-Agriculture, 2009,17(6):1137-1142.
    [8]
    王兵,鲁绍伟. 中国经济林生态系统服务价值评估[J].应用生态学报,2009,20(2):417-425.
    [9]
    王兵,鲁绍伟,尤文忠,等. 辽宁省森林生态系统服务价值评估[J].应用生态学报,2010,21(7):1792-1798.
    [9]
    WANG M Y, XIA R X. Effects of arbuscular mycorrhizal fungi on growth and iron uptake of Poncirus trifoliata under different pH[J]. Acta Microbiologica Sinica ,2009, 49(10):1374-1379.
    [10]
    ZHU Y R, WU F C, LIN Y. Quantitative analysis of protein concentration by absorption peak integration method of spectroscope: taking alkaline phosphatase as an example[J]. Spectroscopy and Spectral Analysis,2013,33(7):1845-1849.
    [10]
    王诚煜,冯海艳,杨忠芳, 等.内蒙古中北部球囊霉素相关土壤蛋白的分布及其环境影响[J].干旱区研究, 2013, 30(1): 22-28.
    [11]
    XU B, MAN J M, WEI C X. Methods for determining relative crystallinity of plant starch X-ray powder diffraction spectra [J].Chinese Bulletin of Botany,2012,47(3):278-285.
    [11]
    唐宏亮,刘龙,王莉,等.土地利用方式对球囊霉素土层分布的影响[J]. 中国生态农业学报,2009,17(6):1137-1142.
    [12]
    王明元,夏仁学.不同pH值下丛枝菌根真菌对枳生长及铁吸收的影响[J]. 微生物学报,2009, 49(10):1374-1379.
    [12]
    ZHU F, ZHAO Q H, DENG W G,et al. Relationships among glomalin related soil protein, SOC and soil texture under different land use types [J]. Journal of Anhui Agricultural Sciences, 2010,38(23):12499-12502.
    [13]
    XU J, TANG M. Relationship between arbuscular mycorrhizal fungi and soil factors in the rhizosphere of different tree species in Pb-Zn polluted mine[J]. Journal of Northwest Agriculture and Forestry University (Nature Science Edtion), 2013,41(5):75-80.
    [13]
    WANG Q, WU Y, WANG W J, et al . Spatial variations in concentration, compositions of glomalin related soil protein in poplar plantations in northeastern China, and possible relations with soil physicochemical properties[J/OL]. The Scientific World Journal,2014: 1-13 [2015-10-30]. http:∥dx.org/10.115/2014/160403.
    [14]
    LI Y H, WANG H M, WANG W J, et al. Ectomycorrhizal influence on particle size, surface structure, mineral crystallinity, functional groups, and elemental composition of soil colloids from different soil origins[J/OL]. The Scientific World Journal, 2013:1-13[2015-10-30]. http:∥dx.doi.org/10.1155/2013/698752.
    [14]
    HUANG L L, LI S, TANG M.Arbuscular mycorrhizal fungi and glomalin in the rhizosphere of different plant species grown in oil-contaminated soil[J]. Acta Botanica Boreali-Occidentalia Sinica,2012,32(3):573-578.
    [15]
    ZHANG J, TANG X L, ZHENG K J, et al. An improved procedure for glomalin-related soil protein measurement in subtropical forest[J]. Chinese Journal of Ecology,2014,33(1):249-258.
    [15]
    朱元荣,吴丰昌,林樱.紫外吸收光谱积分法分析蛋白质浓度:以碱性磷酸酶为例[J].光谱学与光谱分析,2013,33(7):1845-1849.
    [16]
    GILLESPIE A W, FARRELL R E, WALLEY F L, et al. Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials[J]. Soil Biology and Biochemistry ,2011,43(4): 766-777.
    [17]
    徐斌,满建民,韦存虚. 粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨[J].植物学报,2012,47(3):278-285.
    [18]
    WRIGHT S F, UPADHYAYA A, BUYER J S, et al. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis [J]. Soil Biology and Biochemistry, 1998, 30(13):1853-1857.
    [19]
    AGUILERA P, BORIE F, SEGUEL A. Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy[J]. Soil Biology and Biochemistry, 2011,43(12): 2427-2431.
    [20]
    SCHINDLER F V, MERCER E J, RICE J A. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content[J]. Soil Biology and Biochemistry, 2007, 39(1): 320-329.
    [21]
    祝飞,赵庆辉,邓万刚,等.不同土地利用方式下球囊霉素相关土壤蛋白与有机碳及土壤质地的关系[J].安徽农业科学,2010,38(23):12499-12502.
    [22]
    RILLIG M C, RAMSEY P W, MORRIS S, et al. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change[J]. Plant and Soil, 2003,253:293-299.
    [23]
    许加,唐明.铅锌矿污染区不同林木根际丛枝菌根真菌与土壤因子的关系[J].西北农林科技大学学报(自然科学版),2013,41(5):75-80.
    [24]
    黄玲玲,李莎,唐明.石油污染土壤中不同人工林木根际丛枝菌根真菌与球囊霉素的研究[J].西北植物学报,2012,32(3):573-578.
    [25]
    张静,唐旭利,郑克举,等. 赤红壤地区森林土壤球囊霉素相关蛋白测定方法[J]. 生态学杂志,2014,33(1):249-258.
  • Related Articles

    [1]Sun Ruilin, Wang Cheng, Han Wenjing, Bian Qi, Zhang Shujing. Estimates of optimal times for human exposure to sunlight UV radiation in tree shade[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240108
    [2]Sun Yingchun, Liu Ru, Long Ling, Chen Minggui. Low gloss and anti-fingerprint properties of self-wrinkling UV cured polyurethane acrylate wood coatings[J]. Journal of Beijing Forestry University, 2024, 46(4): 149-157. DOI: 10.12171/j.1000-1522.20230351
    [3]Li Wanzhao, Zhang Zheng, Peng Junyi, Wang Xinzhou, Shi Jiangtao, Mei Changtong. Exploring the internal deformation of wood under loading based on X-ray CT[J]. Journal of Beijing Forestry University, 2021, 43(2): 160-164. DOI: 10.12171/j.1000-1522.20200290
    [4]Li Jinyu, Gao Yuan, Zhang Qin, Liu Xiaomin, Gao Hongbo. Genetic identification and analysis of chloroplast division mutants x17-3 and pd50 in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(4): 86-95. DOI: 10.13332/j.1000-1522.20170433
    [5]Zhang Yu-hong, Cheng Kai-shan, Gao Xin, Zhang Xi-guo, Liu Tong. Influence on antioxidants and alkaloid content of Phellodendron amurense seedlings grown under supplementary UV-B radiation[J]. Journal of Beijing Forestry University, 2018, 40(1): 27-36. DOI: 10.13332/j.1000-1522.20170201
    [6]KOU Xin-yue, WANG Yu-jie, ZHANG Xiao-ming, WANG Yun-qi, ZHAO Yang, CHENG Chen. Runoff-sediment relationship and driving force of typical watershed in the third sub-region of hilly loess area, northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(7): 85-93. DOI: 10.13332/j.1000-1522.20140375
    [7]DING Xiao-liu, LIU Jia, ZHAO Hong-xia, WANG Jing, LUO Le, PAN Hui-tang, ZHANG Qi-xiang. Hybrid identification and morphological evaluation of modern roses ( Rosa hybrida ) x Rosa rugosa[J]. Journal of Beijing Forestry University, 2014, 36(5): 123-130. DOI: 10.13332/j.cnki.jbfu.2014.05.005
    [8]GUO Jun-e, LI Tian, SUN Xian-zhi, SUN Xia, ZHENG Cheng-shu. Spermidine participation in the regulation of floral bud differentiation in chrysanthemum (Chrysanthemum x morifolium)[J]. Journal of Beijing Forestry University, 2014, 36(4): 88-93. DOI: 10.13332/j.cnki.jbfu.2014.04.017
    [9]TANG Hui, KONG De-xin, LIANG Hui-ling, WANG Man-lian, SHI Yan-cai, WEI Ji-qing.. Rapid assessment of infrared spectroscopy and chemometrics of Illicium difengpi from different regions by fourier transform[J]. Journal of Beijing Forestry University, 2012, 34(3): 137-141.
    [10]LI Li, XI Bao-tian, YANG Yong-fu. Measurement of residual stress in tensioned circular saws using X-rays[J]. Journal of Beijing Forestry University, 2005, 27(3): 87-90.
  • Cited by

    Periodical cited type(13)

    1. 郭来珍,陈虹,赵善超,陈凤,陈兵权,陈鑫悦. 天山花楸不同种源种子表型变异分析. 种子. 2022(10): 50-57+2 .
    2. 孙永玉,李昆,雷晨雨,田瑞杰,张春华,冯德枫,刘方炎,唐国勇. 干热河谷小桐子不同种源的光合生理及生长性状. 应用与环境生物学报. 2021(02): 351-356 .
    3. 刘莉,王磊,吴丹,赵永军,庄振杰,王震,鲁仪增,刘立江,陆璐,解孝满. 不同种源文冠果种子的表型变异. 经济林研究. 2021(04): 97-105 .
    4. 郭国业,徐莺,唐琳,陈放,韩学琴. 不同地理种源麻疯树表型变异研究. 四川农业大学学报. 2020(02): 143-151+160 .
    5. 句娇,毕泉鑫,赵阳,于丹,崔艺凡,傅光辉,范思琪,陈梦园,于海燕,王利兵. 不同种源文冠果种子及苗期性状地理变异. 江西农业大学学报. 2019(03): 529-540 .
    6. 张毅,敖妍,刘觉非,赵磊磊,张永明. 文冠果种实性状变异规律及优良单株选择. 东北林业大学学报. 2019(09): 1-5 .
    7. 张毅,敖妍,刘觉非,赵磊磊,由海德. 不同分布区文冠果种实性状对生态因子的响应. 西北林学院学报. 2019(05): 85-90 .
    8. 赵海鹄,梁文汇,李宝财,梁忠云. 广西细子龙核仁油化学成分分析. 广西林业科学. 2019(04): 531-534 .
    9. 惠文凯,王益,陈晓阳. 麻疯树种子含油量近红外光谱定标模型的建立. 北京林业大学学报. 2018(01): 1-7 . 本站查看
    10. 何霞,邓成,杨嘉麒,张登,张梦洁,廖柏勇,王芳,陈晓阳. 苦楝种源间生长性状的早期地理变异分析. 北京林业大学学报. 2018(07): 45-54 . 本站查看
    11. 覃敏,尹光天,杨锦昌,李荣生,邹文涛. 米老排不同种源的表型性状变异分析. 浙江农林大学学报. 2017(01): 112-119 .
    12. 许洋,李迎超,冯慧,王迪,丁可君,郭超,刘国军,厉月桥,宁超,贺磊,郭芳. 不同种源栓皮栎种子表型性状的变异分析. 安徽农业科学. 2015(25): 164-167 .
    13. 许洋,李迎超,冯慧,王迪,丁可君,郭超,刘国军,厉月桥,宁超,贺磊,郭芳. 不同种源麻栎种子表型性状的变异分析. 林业科技通讯. 2015(09): 8-12 .

    Other cited types(5)

Catalog

    Article views (1536) PDF downloads (27) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return