• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
FU Jing, DAI Si-lan.. Analysis of color phenotypic and pigment contents of chrysanthemum based on hyperspectral imaging.[J]. Journal of Beijing Forestry University, 2016, 38(8): 88-98. DOI: 10.13332/j.1000-1522.20150483
Citation: FU Jing, DAI Si-lan.. Analysis of color phenotypic and pigment contents of chrysanthemum based on hyperspectral imaging.[J]. Journal of Beijing Forestry University, 2016, 38(8): 88-98. DOI: 10.13332/j.1000-1522.20150483

Analysis of color phenotypic and pigment contents of chrysanthemum based on hyperspectral imaging.

More Information
  • Received Date: December 06, 2015
  • Published Date: August 30, 2016
  • To measure color phenotypic and pigment contents of chrysanthemum, we used 160 varieties of chrysanthemum as research materials. Pigment composition and contents were measured using UV spectrophotometry. Hyperspectral reflection values of different varieties and different parts of ray flowers and different flower rounds were measured by hyperspectral imaging technology. The relationship between hyperspectral reflection indices and pigment contents were analyzed using correlation analysis. The results showed that: 1) Data measured in the middle or rear part of ray flowers in the middle of wheels were stable. 2) Varieties of the same color had similar hyperspectral characteristics. Different varieties of chrysanthemum had significant differences in hyperspectral characteristics. 3) Hyperspectral reflection values RRed/RGreen, ARI, mARI, mCRI and TCARI showed a close correlation with pigment contents of ray flowers and their monitoring models were established accordingly using 80 varieties. 4) Using another 80 varieties as the verification materials, we found that models established with RRed/RGreen, ARI and mARI for anthocyanin content monitoring, and models established with mCRI for carotenoid content monitoring and models established with TCARI for chlorophyll monitoring had high accuracy. The established models can be used for nondestructive and fast determination of pigment composition and contents of chrysanthemum. Our research provides new ideas and methods for color phenotypic analysis and measurement of pigment composition and content of ornamental plants.
  • [1]
    YOSHIKAZU T, NOBUHIRO S, AKEMI O. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J]. The Plant Journal, 2008, 54: 733-749.
    [1]
    GITELSON A A, CHIVKUNOVA O B, MERZLYAK M N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves[J]. American Journal of Botany, 2009, 96(10): 1861-1868.
    [2]
    VANE G, GOETZ A F H. Terrestrial imaging spectrometry: current status, future trends[J]. Remote Sensing of Environment, 1993, 44: 117-126.
    [3]
    丁圣彦, 李昊民, 钱乐祥. 应用遥感技术评价植被生化物质含量的研究进展[J]. 生态学杂志, 2004, 23(4): 109-117.
    [4]
    DING S Y, LI H M, QIAN L X. Research advances in remote sensing techniques in estimation of vegetation biochemical material contents[J]. Chinese Journal of Ecology, 2004, 23(4): 109-117.
    [5]
    沈艳, 牛铮, 颜春燕. 植被叶片及冠层层次含水量估算模型的建立[J]. 应用生态学报, 2005, 16(7): 1218-1223.
    [6]
    SHEN Y, NIU Z, YAN C Y. Estimation models for vegetation water content at both leaf and canopy levels[J]. Chinese Journal of Applied Ecology, 2005, 16(7): 1218-1223.
    [7]
    刘占宇, 黄敬峰, 吴新宏, 等. 天然草地植被覆盖度的高光谱遥感估算模型[J]. 应用生态学报, 2006, 17(6): 997-1002.
    [8]
    LIU Z Y, HUANG J F, WU X H,et al. Hyperspectral remote sensing estimation models on vegetation coverage of natural grassland[J]. Chinese Journal of Applied Ecology, 2006, 17(6): 997-1002.
    [9]
    DATT B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves[J]. Remote Sensing of Environment, 1998, 66: 111-121.
    [10]
    LE MAIRE G, FRANCOIS C, DUFRNE E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements[J]. Remote Sensing of Environment, 2004, 89: 1-28.
    [11]
    BLACKBURN G A. Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves[J]. International Journal of Remote Sensing, 1998, 19(4): 657-675.
    [12]
    BLACKBURN G A. Quantifying chlorophylls and carotenoids from leaf to canopy scales: an evaluation of some hyper-spectral approaches[J]. Remote Sensing of Environment, 1998, 66: 273-285.
    [13]
    BLACKBURN G A, STEELE C M. Towards the remote sensing of matorral vegetation physiology: relationships between spectral reflectance, pigment and biophysical characteristics of semi-arid bush land canopies[J]. Remote Sensing of Environment, 1999, 70: 278-292.
    [14]
    BLACKBURN G A. Hyperspectral remote sensing of plant pigments[J]. Journal of Experimental Botany, 2006, 58(4): 855-867.
    [15]
    BLACKBURN G A. Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation[J]. International Journal of Remote Sensing, 2007, 28(12): 2831-2855.
    [16]
    BLACKBURN G A, FERWERDA J G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis[J]. Remote Sensing of Environment, 2008, 112: 1614-1632.
    [17]
    GAMON J A, SURFUS J S. Assessing leaf pigment content and activity with a reflectometer[J]. New Phytol, 1999, 143(1): 105-117.
    [18]
    GITELSON A A, MERZLYAK M N, CHIVKUNOVA O B. Optical properties and non-destructive estimation of anthocyanin content in plant leaves[J]. Photochemistry and Photobiology,2001, 74: 38-45.
    [19]
    GITELSON A A, KEYDAN G P, MERZLYAK M N. Three band model for noninvasive estimation of chlorophyll, carotenoids,and anthocyanin contents in higher plant leaves[J]. Geophysical Research Letters,2006, 33: L11402.
    [20]
    GITELSON A A, CHIVKUNOVA O B, MERZLYAK M N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves[J]. American Journal of Botany, 2009, 96(10): 1861-1868.
    [21]
    VAN DEN BERG A K, PERKINS T D. Nondestructive estimation of anthocyanin content in autumn sugar maple leaves[J]. HortScience, 2005, 40: 685-686.
    [22]
    MERZLYAK M N, SOLOVCHENKO A E, GITELSON A A. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit[J]. Post Biology Technology, 2003, 27: 197-211.
    [23]
    吴长山, 项月琴, 郑兰芬, 等. 利用高光谱数据对作物群体叶绿素密度估算的研究[J]. 遥感学报, 2000, 4(3): 228-232.
    [24]
    WU C S, XIANG Y Q, ZHENG L F,et al. Estimating chlorophyll density of crop canopies by using hyperspectral data [J]. Journal of Remote Sensing, 2000, 4(3): 228-232.
    [25]
    刘伟东, 项月琴, 郑兰芬, 等. 高光谱数据与水稻叶面积值数及叶绿素密度的相关分析[J]. 遥感学报, 2000,4(4): 279-283.
    [26]
    LIU W D, XIANG Y Q, ZHENG L F,et al. Relationships between rice LAI, CH.D and hyperspectra data[J]. Journal of Remote Sensing, 2000, 4(4): 279-283.
    [27]
    吉海彦, 王鹏新, 严泰来. 冬小麦活体叶片叶绿素和水分含量与反射光谱的模型建立[J]. 光谱学与光谱分析, 2007, 27(3): 514-516.
    [28]
    JI H Y, WANG P X, YAN T L. Estimations of chlorophyll and water contents in live leaf of winter wheat with reflectance spectroscopy[J]. Spectroscopy and Spectral Analysis, 2007, 27(3): 514-516.
    [29]
    张永贺, 陈文惠, 郭乔影, 等. 桉树叶片光合色素含量高光谱估算模型[J]. 生态学报, 2013, 33(3): 876-887.
    [30]
    ZHANG Y H, CHEN W H, GUO Q Y,et al. Hyperspectral estimation models for photosynthetic pigment contents in leaves of Eucalyptus[J]. Acta Ecologica Sinica, 2013, 33(3): 876-887.
    [31]
    FASSNACHT F E, STENZELA S, GITELSONB A A. Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices[J]. Journal of Plant Physiology, 2015, 176: 210-217.
    [32]
    李鸿渐. 中国菊花[M]. 南京: 江苏科学技术出版社, 1993.
    [33]
    LI H J. Chinese chrysanthemum[M]. Nanjing: Jiangsu Science and Technology Press, 1993.
    [34]
    洪艳, 白新祥, 孙卫, 等. 菊花品种花色表型数量分类研究[J]. 园艺学报, 2012, 39(7): 1330-1340.
    [35]
    HONG Y, BAI X X, SUN W,et al. The numerical classification of chrysanthemum flower color phenotype[J]. Acta Horticulturae Sinica, 2012, 39(7): 1330-1340.
    [36]
    张树林, 戴思兰. 中国菊花全书[M]. 北京: 中国林业出版社, 2013.
    [37]
    ZHANG S L, DAI S L. The chrysanthemum of China[M]. Beijing: China Forestry Publishing House, 2013.
    [38]
    朱西存, 赵庚星, 王瑞燕, 等. 苹果叶片的高光谱特征及其色素含量监测[J]. 中国农业科学, 2010, 43(6): 1189-1197.
    [39]
    ZHU X C, ZHAO G X, WANG R Y, et al. Hyperspectral characteristics of apple leaves and their pigment contents monitoring[J]. Scientia Agricultura Sinica, 2010, 43(6): 1189-1197.
    [40]
    孙卫, 李崇晖, 王亮生, 等. 菊花舌状花花色测定部位的探讨[J]. 园艺学报, 2010, 37(5): 777-784.
    [41]
    SUN W, LI C H, WANG L S, et al. Analysis on measuremental position of ligulate floret color of chrysanthemum[J]. Acta Horticulturae Sinica, 2010, 37(5): 777-784.
    [42]
    ZHANG J J, WANG L S, SHU Q Y, et al. Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony[J]. Scientia Horticulturae, 2007, 114: 104-111.
    [43]
    白新祥, 胡可, 戴思兰, 等. 不同花色菊花品种花色素成分的初步分析[J]. 北京林业大学学报, 2006, 28(5): 84-88.
    [44]
    BAI X X, HU K, DAI S L,et al. Components of flower pigments in the petals of different color Chrysanthemum morifolium Ramat. cultivars [J]. Journal of Beijing Forestry University, 2006, 28(5): 84-88.
    [45]
    赵昶灵, 郭维明, 陈俊愉. 梅花花色色素种类和含量的初步研究[J]. 北京林业大学学报, 2004, 26(2): 68-73.
    [46]
    ZHAO C L, GUO W M, CHEN J Y. Preliminary study on the categories and contents of the flower color pigments of Prunus mume Sieb.et Zucc [J]. Journal of Beijing Forestry University, 2004, 26(2): 68-73.
    [47]
    KARL H D. A rapid method for the extraction and quantitative of total anthocyanin of cranberry fruit[J]. Agriculture Food Chemistry, 1978, 26(6): 1452-1453.
    [48]
    LITCHENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes [J]. Method Enzymology, 1987, 148: 350-382.
    [49]
    ARNON D I. Copper enzymes in isolated chloroplasts; polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1): 1-15.
    [50]
    MERZLYAK M N, GITELSON A A, CHIVKUNOVA O B, et al. Non-destructive optical detection of leaf senescence and fruit ripening[J]. Physical Plant, 1999, 106(1): 135-141.
    [51]
    ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[C]∥FREDEN S C, MERCANTI E P, BECKER M A. Third earth resources technology Satellite-1 symposium. Washington D. C.: NASA Science and Technology Information Office, 1974: 301-317
    [52]
    SIMS D A, GAMON J A. Relationship between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and development stages[J]. Remote Sensing of Environment, 2002, 81: 337-354.
    [53]
    RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55: 95-107.
    [54]
    MEGGIO F, ZARCO-TEJADA P J, NAU'U1 EZ L C, et al. Grape quality assessment in vineyards affected by iron deficiency chlorosis using narrow-band physiological remote sensing indices[J]. Remote Sensing of Environment, 2010, 114: 1968-1986.
    [55]
    林辉, 臧卓, 刘秀英. 森林树种高光谱遥感研究[M]. 北京:中国林业出版社, 2011.
    [56]
    LIN H, ZANG Z, LIU X Y. Hyperspectral remote sensing research of forest trees[M]. Beijing: Chinese Forestry Press, 2011.
  • Related Articles

    [1]Wang Xiaoshuang, Chen Jungang, Zhang Yunhai, Yu Xinxiao. Effects of seasonal nitrogen addition on soil net nitrogen mineralization in typical temperate grasslands of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 63-70. DOI: 10.12171/j.1000-1522.20230018
    [2]Tian Di, Lin Quanhong, Zhao Changti, Zhu Ruide, Ma Suhui, Yu Qingshui, Ji Chengjun, Shen Haihua. Effects of nitrogen addition on the key carbon sequestration process in a tropical montane rainforest in Hainan Province of southern China: a case study of photosynthesis of dominant trees Cryptocarya chinensis and Gironniera subaequalis[J]. Journal of Beijing Forestry University, 2022, 44(10): 93-101. DOI: 10.12171/j.1000-1522.20220401
    [3]Zhao Han, Wang Haiyan, Luo Peng, Du Xue, Zou Jiahe, Fu Liyong, Lei Xiangdong. Effects of micro-topography on soil organic carbon and total nitrogen in mixed spruce-fir-broadleaf forest[J]. Journal of Beijing Forestry University, 2022, 44(8): 88-97. DOI: 10.12171/j.1000-1522.20210237
    [4]Yu Hui, Song Qinghai, Zhang Yiping, Gnanamoorthy Palingamoorthy, Zhang Jing, Sadia Bibi. Long-term variation characteristics of radiation in the tropical seasonal rainforest in Xishuangbanna, southwestern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 56-67. DOI: 10.12171/j.1000-1522.20200270
    [5]Li Cong, Lu Mei, Ren Yulian, Du Fan, Tao Hai, Yang Luoping, Wang Dongxu. Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(12): 63-73. DOI: 10.12171/j.1000-1522.20200252
    [6]WANG Jin-song, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 88-94. DOI: 10.13332/j.1000-1522.20140294
    [7]YANG Xiao-yan, FAN Rui-ying, WANG En-heng, XIA Xiang-you, CHEN Xiang-wei, LU Qian-qian, KONG Ling-wei, ZHU Hao.. Effects of extraction conditions on topsoil dissolved organic carbon concentration of black soil.[J]. Journal of Beijing Forestry University, 2013, 35(5): 68-72.
    [8]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [9]DOU Jun-xia, ZHANG Yi-ping, ZHAO Shuang-ju, SONG Qing-hai. Characteristics of radiation at different heights within the canopy of a tropical seasonal rain forest in Xishuangbanna, Southwest China[J]. Journal of Beijing Forestry University, 2006, 28(2): 15-21.
    [10]ZHANG Yi-ping, DOU Jun-xia, YU Gui-rui, ZHAO Shuang-ju, SONG Qing-hai, SUN Xiao-min. Characteristics of solar radiation and its distribution above the canopy of tropical seasonal rain forest in Xishuangbanna, Southwest China[J]. Journal of Beijing Forestry University, 2005, 27(5): 17-25.
  • Cited by

    Periodical cited type(2)

    1. 蔡文良,谢艳云,唐雯. 海南尖峰岭热带山地雨林土壤有机碳储量和垂直分布特征. 生态环境学报. 2019(08): 1514-1521 .
    2. 王玉哲,刘俊第,严强,方熊,易志刚,胡亚林,刘先. 马尾松林采伐迹地火烧黑炭对土壤活性碳氮库的影响. 生态学报. 2018(20): 7198-7207 .

    Other cited types(4)

Catalog

    Article views (1988) PDF downloads (46) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return