• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
CHEN Ai-min, YAN Si-wei, LIN Yong-ming, DENG Hao-jun, DU Kun, SUN Fan, WANG Dao-jie, WU Cheng-zhen, HONG Wei. Evaluation of soil anti-erodibility at different ages of Leucaena leucocephala forests in the area with high-frequency debris flow.[J]. Journal of Beijing Forestry University, 2016, 38(9): 62-70. DOI: 10.13332/j.1000-1522.20150530
Citation: CHEN Ai-min, YAN Si-wei, LIN Yong-ming, DENG Hao-jun, DU Kun, SUN Fan, WANG Dao-jie, WU Cheng-zhen, HONG Wei. Evaluation of soil anti-erodibility at different ages of Leucaena leucocephala forests in the area with high-frequency debris flow.[J]. Journal of Beijing Forestry University, 2016, 38(9): 62-70. DOI: 10.13332/j.1000-1522.20150530

Evaluation of soil anti-erodibility at different ages of Leucaena leucocephala forests in the area with high-frequency debris flow.

More Information
  • Received Date: January 07, 2016
  • Published Date: September 29, 2016
  • Soil anti-erodibility is one of the important parameters for evaluating the ability of soil resistance to soil erosion. Aiming to understand the effect of vegetation restoration on soil erosion durability in the area with high-frequency debris flow, we determined the soil anti-erodibility at different ages of Leucaena leucocephala forests by using principal component analysis based on the data collected from the field and analyzed in the laboratory. The results showed that: 1) as the age of L. leucocephala forest increased, soil permeability, structure stability and soil nutrient decreased except for the content of fine particle; 2) the comprehensive indexes of soil anti-erodibility followed the rule as 10 a 16 a 27 a, indicating that the soil anti-erodibility decreased with forest age in Jiangjia gully; 3) according to Pearsons correlations, all the 13 anti-erodibility indicators could be simplified to 5 indicators which were soil density, maximum water-holding capacity, the content of water-stable aggregates at size 0.25 mm, clay content and silt content. Taking 5 selected indicators (X) as independent variables and soil anti-erodibility indicator (Y) as dependent variable, the soil anti-erodibility model was built by linear regression analysis as Y=-8.691X1+0.054X2+0.700X3-0.425X4-0.189X5-12.511. This result could provide a reference for the building of soil anti-erodibility assessment indicator system and its future research in the area with high-frequency debris flow.
  • [1]
    王云琦, 王玉杰, 朱金兆. 重庆缙云山典型林分林地土壤抗蚀性分析[J]. 长江流域资源与环境, 2005, 14(6): 775-780.
    [1]
    BOUYOUCOS G J. The clay ratio as a criterion of susceptibility of soil to erosion [J]. Journal of American Society of Agronomy, 1935, 27: 738-741.
    [2]
    WANG Y Q, WANG Y J, ZHU J Z. Anti-erodibility analysis in forest soil of typical forests in Jinyun mountain in Chongqing city [J]. Resources and Environment in the Yangtze Basin, 2005, 14(6): 775-780.
    [3]
    沈慧, 姜凤岐, 杜晓军, 等. 水土保持林土壤抗蚀性能评价研究[J]. 应用生态学报, 2000, 11(3): 345-348.
    [4]
    SHEN H, JIANG F Q, DU X J, et al. Evaluation on soil anti-erodibility of soil and water conservation forest [J]. Chinese Journal of Applied Ecology, 2000, 11(3): 345-348.
    [5]
    MARTIJKR M B, GOVERS G, VAN DOORN A M, et al. The response of soil erosion and sediment export to land-use change in four areas of Europe: the importance of landscape pattern [J]. Geomorphology, 2008, 98(3): 213-226.
    [6]
    丛日亮, 黄进, 张金池, 等. 苏南丘陵区主要林分类型土壤抗蚀性分析[J]. 生态环境学报, 2010, 19(8): 1862-1867.
    [7]
    CONG R L, HUANG J, ZHANG J C, et al. Analysis of soil anti-erodibility of main forest types in the south hilly region of Jiangsu province [J]. Ecology and Environmental Sciences, 2010, 19(8): 1862-1867.
    [8]
    LE BISSONNAIS Y. Aggregate stability and assessment of soil crust ability and erodibility: I. theory and methodology [J]. European Journal of Soil Science, 1996, 47(4): 425-437.
    [9]
    阮伏水, 吴雄海. 关于土壤可蚀性指标的讨论[J]. 水土保持通报, 1996, 16(6): 68-72.
    [10]
    RUAN F S, WU X H. A review on the indexes of soil erodibility [J]. Bulletin of Soil and Water Conservation, 1996, 16(6): 68-72.
    [11]
    王玉杰, 王云琦, 夏一平. 重庆缙云山典型林分的林地土壤抗蚀抗冲性能[J]. 中国水土保持科学, 2006, 4(1): 20-27.
    [12]
    WANG Y J, WANG Y Q, XIA Y P. Soil erosion resistance of typical forests in Jinyun mountain in Chongqing city [J]. Science of Soil and Water Conservation, 2006, 4(1): 20-27.
    [13]
    薛萐, 李占斌, 李鹏, 等. 不同植被恢复模式对黄土丘陵区土壤抗蚀性的影响[J]. 农业工程学报, 2009, 25(增刊1): 69-72.
    [14]
    XUE S, LI Z B, LI P, et al. Effects of different vegetation restoration models on soil anti-erodibility in loess hilly area [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(Suppl.1): 69-72.
    [15]
    张超, 刘国彬, 薛萐, 等. 黄土丘陵区不同林龄人工刺槐林土壤抗蚀性演变特征[J]. 中国水土保持科学, 2010, 8(2): 1-7.
    [16]
    ZHANG C, LIU G B, XUE S, et al. Evolution of soil anti-erodibility of Robinia pseudoacacia L. plantation at different ages in Hilly-gully region of Loess Plateau [J]. Science of Soil and Water Conservation, 2010, 8(2): 1-7.
    [17]
    付允, 贾亚男, 蓝家程. 岩溶区不同土地利用方式土壤抗蚀性分析[J]. 水土保持研究, 2011, 18(5): 5-9.
    [18]
    FU Y, JIA Y N, LAN J C. Analysis of soil anti-erodibility of slope farmland in karst mountain area based on tillage erosion [J]. Research of Soil and Water Conservation, 2011, 18(5): 5-9.
    [19]
    史东梅, 陈晏. 紫色丘陵区农林混作模式的土壤抗冲性影响因素[J]. 中国农业科学, 2008, 41(5): 1400-1409.
    [20]
    SHI D M, CHEN Y. The influencing factors of soil anti-scouribility of tree-crop intercropping land in purple soil hilly region [J]. Scientia Agricultura Sinica, 2008, 41(5): 1400-1409.
    [21]
    吴丽丽, 张仁陟, 康立军. 紫色丘陵区坡耕地生物梗的土壤抗蚀性综合评价[J]. 中国生态农业学报, 2014, 22(11): 1310-1317.
    [22]
    WU L L, ZHANG R S, KANG L J. Comprehensive evaluation of soil erosion durability of bio-banks on slope lands in purple hilly areas [J]. Chinese Journal of Eco-Agriculture, 2014, 22(11): 1310-1317.
    [23]
    陈瑜. 四川盆周山地杉木人工混交林土壤的抗蚀性能[D]. 雅安: 四川农业大学, 2010.
    [24]
    CHEN Y. Study on the land erosion resistance for the mixed artificial Chinese fir forest of mountain areas around Sichuan basin [D]. Yaan: Sichuan Agricultural University, 2010.
    [25]
    崔鹏, 王道杰, 韦方强. 干热河谷生态修复模式及其效应以中国科学院东川泥石流观测研究站为例[J]. 中国水土保持科学, 2005, 3(3): 60-64.
    [26]
    CUI P, WANG D J, WEI F Q. Model and effect of ecological restoration of dry-hot valley: a case study of the CAS Dongchuan debris flow observation station [J]. Science of Soil and Water Conservation, 2005, 3(3): 60-64.
    [27]
    廖超林, 何毓蓉, 徐佩. 泥石流源地土壤团聚体抗蚀特征研究:以蒋家沟为例[J]. 地球与环境, 2005, 33(4): 65-69.
    [28]
    LIAO C L, HE Y R, XU P. A study on anti-erodibility of soil aggregates in debris flow provenance: a case study in Jiangjiagou [J]. Earth and Environment, 2005, 33(4): 65-69.
    [29]
    郭灵辉, 王道杰, 陈东, 等. 蒋家沟泥石流区新银合欢细根固土效应[J]. 水土保持通报, 2011, 31(5): 85-89,214.
    [30]
    GUO L H, WANG D J, CHEN D, et al. Effect of Leucaena leucocephala fine root on soil fixation in debris flow area of Jiangjia gully [J]. Bulletin of Soil and Water Conservation, 2011, 31(5): 85-89,214.
    [31]
    林勇明, 崔鹏, 葛永刚, 等. 泥石流频发区人工恢复新银合欢林种内竞争:以云南东川蒋家沟流域为例[J]. 北京林业大学学报, 2008, 30(3): 13-17.
    [32]
    LIN Y M, CUI P, GE Y G, et al. Intraspecific competition of Leucaena leucocephala plantation in the area of high frequency debris flow: taking the Jiangjiagou Gully as an example [J]. Journal of Beijing Forestry University, 2008, 30(3): 13-17.
    [33]
    张有富. 云南蒋家沟泥石流区干热退化山地引种拟金茅的技术与效果[J]. 山地学报, 2000, 18(6): 563-567.
    [34]
    ZHANG Y F. Technique and results of common Eulaliopsis application on xerothermic degraded mountain in Jiang jia gou debris flow gully [J]. Journal of Mountain Science, 2000, 18(6): 563-567.
    [35]
    吴积善, 康志成, 田连权, 等. 云南蒋家沟泥石流观测研究[M]. 北京:科技出版社, 1990: 238-239.
    [36]
    WU J S, KANG Z C, TIAN L Q, et al. Observation study in Jiangjia gully in Yunnan province [M]. Beijing: Science Press, 1990: 238-239.
    [37]
    郭灵辉, 王道杰, 张云红, 等. 泥石流源区新银合欢林地土壤微团聚体分形特征[J]. 水土保持学报, 2010, 24(5): 243-247.
    [38]
    GUO L H, WANG D J, ZHANG Y H, et al. Fractal features of soil micro-aggregates under Leucaena leucocephala forest in debris flow source area [J]. Journal of Soil and Water Conservation, 2010, 24(5): 243-247.
    [39]
    邓浩俊, 陈爱民, 严思维, 等. 不同林龄新银合欢重吸收率及其C∶N∶P化学计量特征[J]. 应用与环境生物学报, 2015, 21(3): 522-527.
    [40]
    DENG H J, CHEN A M, YAN S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages of Leucaena leucocephala [J]. Chinese Journal of Applied Environment Biology, 2015, 21(3): 522-527.
    [41]
    中国林业科学研究院林业研究所森林土壤研究室. 森林土壤水分-物理性质的测定:LY/T 12151999[S]. 北京:国家林业局, 1999.
    [42]
    Forest Soil Laboratory of Research Institute of Forestry, Chinese Academy of Forestry. Determination of forest soil water-physical properties: LY/T 12151999[S]. Beijing: State Forestry Administration, 1999.
    [43]
    杜锟, 严思维, 张广帅, 等. 蒋家沟泥石流滩地不同堆积时期土壤肥力质量演变特征[J]. 应用与环境生物学报, 2015, 21(4): 762-769.
    [44]
    DU K, YAN S W, ZHANG G S, et al. Soil quality evolution characteristics of debris flow waste-shoal land indifferent deposit periods in Jiangjia Gully [J]. Chinese Journal of Applied Environment Biology, 2015, 21(4): 762-769.
    [45]
    景可, 王万忠, 郑粉莉. 中国土壤侵蚀与环境[M]. 北京: 科学出版社, 2005.
    [46]
    JING K, WANG W Z, ZHENG F L. Soil erosion and its environment in China [M]. Beijing: Science Press, 2005.
    [47]
    张建辉, 刘刚才, 倪师军, 等. 紫色土不同土地利用条件下的土壤抗冲性研究[J]. 中国科学E辑, 2003, 33(增刊): 61-68.
    [48]
    ZHANG J H, LIU G C, NI S J, et al. Study on soil anti-scouribility of different land uses in purple area [J]. Science in China Series Edition, 2003, 33(Suppl.): 61-68.
    [49]
    黄冠华, 詹卫华. 土壤颗粒的分形特征及其应用[J]. 土壤学报, 2002, 39(4): 490-497.
    [50]
    HUANG G H, ZHAN W H. Fractal property of soil particle size distribution and its application [J]. Acta Pedologica Sinica, 2002, 39(4): 490-497.
    [51]
    张社奇, 王国栋, 时新玲, 等. 黄土高原油松人工林地土壤水分物理性质研究[J]. 干旱地区农业研究, 2005, 23(1): 60-64.
    [52]
    ZHANG S Q, WANG G D, SHI X L, et al. Improvement of soil hydro-physical properties by artificial Robinia Pinus Tabulaeformis carr forests in the Loess Plateau [J]. Agricultural Research in the Arid Areas, 2005, 23(1): 60-64.
    [53]
    陈明, 陈继平, 陈昌利. 土壤最大持水量与环境因子的关系[J]. 西南科技大学学报(哲学社会科学版), 1991, 8(4): 26-30.
    [54]
    CHEN M, CHEN J P, CHEN C L. Study on relationship between maximum capacity of soil moisture and environmental factors [J]. Journal of Southeast of Science and Technology(Philosophy and Social Science Edition), 1991, 8(4): 26-30.
    [55]
    涂淑萍, 周桂香, 郭晓敏, 等. 赣县稀土采矿区巨桉林地土壤抗蚀性评价[J]. 林业科学研究, 2013, 26(6): 752-758.
    [56]
    TU S P, ZHOU G X, GUO X M, et al. Evaluation of soil anti-erodibility of Eucalyptus grandis forest land in rare earth mining area [J]. Forest Research, 2013, 26(6): 752-758.
    [57]
    林勇明, 崔鹏, 王道杰, 等. 泥石流频发区人工新银合欢群落特征[J]. 中国水土保持科学, 2009, 7(6): 63-67.
    [58]
    LIN Y M, CUI P, WANG D J, et al. Community characteristic of plantation of Leucaena leucocephala in the area with high-frequency debris flow [J]. Science of Soil and Water Conservation, 2009, 7(6): 63-67.
    [59]
    王道杰, 崔鹏, 朱波, 等. 金沙江干热河谷植被恢复技术及生态效应:以云南小江流域为例[J]. 水土保持学报, 2004, 18(5): 95-98.
    [60]
    WANG D J, CUI P, ZHU B, et al. Vegetation rehabilitation techniques and ecological effects in dry-hot valley of Jinsha River: case study in Xiaojiang basin, Yunnan province [J]. Journal of Soil and Water Conservation, 2004, 18(5): 95-98.
    [61]
    郑子成, 杨玉梅, 李廷轩. 不同退耕模式下土壤抗蚀性差异及其评价模型[J]. 农业工程学报, 2011, 27(10): 199-205.
    [62]
    ZHENG Z C, YANG Y M, LI T X. Difference and evaluation model of soil anti-erodibility with different de-farming patterns [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 199-205.
  • Related Articles

    [1]Zhang Houjiang, Li Yufeng. Content and research progress in nondestructive testing of wooden structures in ancient architecture[J]. Journal of Beijing Forestry University, 2024, 46(4): 1-13. DOI: 10.12171/j.1000-1522.20240015
    [2]Ye Qi, Guan Cheng, Zhang Houjiang, Gong Yingchun, Sui Yongfeng, Liu Lige. Optimization of finger joint parameters and nondestructive testing of bending properties of radiata pine laminates[J]. Journal of Beijing Forestry University, 2022, 44(3): 148-160. DOI: 10.12171/j.1000-1522.20210351
    [3]Li Huan, Guan Cheng, Zhang Houjiang, Liu Jinhao, Zhou Jianhui, Xin Zhenbo. Determining modulus of elasticity of full-size plywood panel simply supported on two opposite sides using a vibration method[J]. Journal of Beijing Forestry University, 2021, 43(2): 138-149. DOI: 10.12171/j.1000-1522.20200300
    [4]WANG Yun-lu, WANG Zheng, LI Min-min, CAO Yu. Discussion on static testing method of material MDF constants of elastic modulus, Poisson's ratio and shear modulus[J]. Journal of Beijing Forestry University, 2017, 39(10): 117-121. DOI: 10.13332/j.1000-1522.20170107
    [5]FENG Li, QIN Nan. Dominant factor analysis of dynamic Young modulus of poplar LVL.[J]. Journal of Beijing Forestry University, 2012, 34(4): 146-148.
    [6]ZHANG Hou-jiang, GUO Zhi-ren, John F Hunt, FU Feng. Measuring modulus of elasticity for thin wood composites using a dynamic method[J]. Journal of Beijing Forestry University, 2010, 32(2): 149-152.
    [7]ZHAN Jianfeng, GU Jiyou, CAI Yingchun.. Dynamic viscoelastic characteristics of larch timber during conventional drying process. [J]. Journal of Beijing Forestry University, 2009, 31(1): 125-129.
    [8]JIANG Jiali, LV Jian-xiong.. Dynamic viscoelastic properties of drying treated wood.[J]. Journal of Beijing Forestry University, 2008, 30(3): 96-100.
    [9]JIANG Jia-li, LÜ Jian-xiong, ZHAO Guang-jie. Viscoelastic properties of wood treated by different reagents[J]. Journal of Beijing Forestry University, 2006, 28(1): 88-92.
    [10]ZHANG Hou-jiang, SHEN Shi-jie, CUI Ying-ying, MIAO Yi, WANG Ying-kun. Measuring elastic modulus of wood using vibration method[J]. Journal of Beijing Forestry University, 2005, 27(6): 91-94.
  • Cited by

    Periodical cited type(9)

    1. 辛守英,王晓红,焦琳琳. 基于遥感数据和优化Blending算法的人工林地上生物量估算研究. 西北林学院学报. 2025(02): 207-219 .
    2. 郝君,吕康婷,胡天祺,王云阁,徐刚. 基于机器学习的红树林生物量遥感反演研究. 林草资源研究. 2024(01): 65-72 .
    3. 李敏,陈利,李静泰,闫丹丹,刘垚,吴翠玲,栾兆擎. 基于Sentinel-2数据的互花米草地上生物量反演. 海洋环境科学. 2024(03): 386-397 .
    4. 廖易,张加龙,鲍瑞,许冬凡. 基于Landsat的高山松地上生物量动态变化估测模型构建. 西南林业大学学报(自然科学). 2023(01): 117-125 .
    5. 郭芮,伏帅,侯蒙京,刘洁,苗春丽,孟新月,冯琦胜,贺金生,钱大文,梁天刚. 基于Sentinel-2数据的青海门源县天然草地生物量遥感反演研究. 草业学报. 2023(04): 15-29 .
    6. 廖易,张加龙,鲍瑞,许冬凡,王书贤,韩冬阳. 引入地形因子的高山松地上生物量动态估测. 生态学杂志. 2023(05): 1243-1252 .
    7. 王熙媛,张王菲,李云,杨仙保. 依据光学遥感特征优选的森林地上生物量反演. 东北林业大学学报. 2022(04): 47-54 .
    8. 陈园园,张晓丽,高显连,高金萍. 基于Sentinel-1和Sentinel-2A的西小山林场平均树高估测. 应用生态学报. 2021(08): 2839-2846 .
    9. 陈小芳,李军,李新伟,周毅. 基于高光谱的水稻生物量估测模型研究. 安徽科技学院学报. 2021(05): 53-59 .

    Other cited types(11)

Catalog

    Article views (2099) PDF downloads (18) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return