• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
LIU Yan-hui, DING Fang-jun, CUI Ying-chun, XIE Tao, MA Heng-fa, ZHAO Wen-jun. Effects of tending on carbon storage in the ecosystems of young Chinese fir plantations at the middle region of Guizhou Province, southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 27-33. DOI: 10.13332/j.1000-1522.20160021
Citation: LIU Yan-hui, DING Fang-jun, CUI Ying-chun, XIE Tao, MA Heng-fa, ZHAO Wen-jun. Effects of tending on carbon storage in the ecosystems of young Chinese fir plantations at the middle region of Guizhou Province, southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 27-33. DOI: 10.13332/j.1000-1522.20160021

Effects of tending on carbon storage in the ecosystems of young Chinese fir plantations at the middle region of Guizhou Province, southwestern China

More Information
  • Received Date: January 14, 2016
  • Revised Date: June 23, 2016
  • Published Date: December 31, 2016
  • This study was conducted to quantify the response of carbon storage in forest ecosystems to the tending works, which are often necessary and important measures to promote the survival rate and growth of young trees. In this study, the density of organic carbon and its components (above- and below-ground biomass C, forest floor C, and soil C at the layer of 0-60 cm) were measured and compared between tended stands (TS) and non-tended stands (CK) of 10-year-old young plantation of Chinese fir (Cunninghamia lanceolata) in the middle region of Guizhou Province of China. The results showed that the canopy density, survival rate, diameter at breast height (DBH) and height of trees were higher in TS than in CK. The carbon fixing ability of individual trees was greatly enhanced, demonstrated by that the carbon storage of individual trees in TS was 4.93 times of that in CK. The total carbon storage in the whole ecosystems of Chinese fir young plantation was also significantly elevated by the tending, from 78.61 in CK to 106.37 t/ha in TS. The carbon storage components of young Chinese fir plantation ecosystems responded differently to tending works. The vegetation layer carbon storage was 26.07 t/ha in TS, 5.62 times of CK (4.64 t/ha). The humus layer carbon storage was increased by 0.38 t/ha in TP compared with CK. Compared with CK, the organic carbon content was decreased by 5.44 g/kg in the 0-10 cm soil layer, the organic carbon content was increased in the soil layers below 10 cm in depth, and the organic carbon density in the 0-60 cm soil layer was increased by 3.30 t/ha in TS than in CK. Thus, it can be concluded that the measure of tending can enhance the tree growth, the carbon storage of vegetation and soil and the service of carbon sequestration of the ecosystem of young Chinese fir plantation in the studied region.
  • [1]
    PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333: 988-993. doi: 10.1126/science.1201609
    [2]
    FANG J Y, CHEN A P. Dynamic forest biomass carbon pools in China and their significance[J]. Acta Botanica Sinica, 2001, 43(9): 967-973. http://d.old.wanfangdata.com.cn/Periodical/zwxb200109014
    [3]
    JURGENSEN M F, TIARKS A E, PONDER F, et al. Soil physical property changes at the North American long-term soil productivity study sites: 1 and 5 years after compaction[J]. Canadian Journal of Forest Research, 2006, 36(3): 551-564. doi: 10.1139/x05-273
    [4]
    MADEIRA M, RIBEIRO C, ARAÚJO M C. Decomposition and nutrient release from leaf litter of Eucalyptus globulus grown under different water and nutrient regimes[J]. Forest Ecology & Management, 2002, 171(1-2): 31-41. https://www.sciencedirect.com/science/article/pii/S0378112702004590
    [5]
    PENG Y, THOMAS S C, TIAN D. Forest management and soil respiration: implications for carbon sequestration[J]. Environ-mental Reviews, 2008, 16(1): 93-111. doi: 10.1139/A08-003#.XXczw_k6s7M
    [6]
    HAYNES B E, GOWER S T. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern wisconsin[J]. Tree Physiology, 1995, 15(5): 317-325. doi: 10.1093/treephys/15.5.317
    [7]
    BRICEЙO -ELIZONDO E, GARCIA-GONZALO J, PELTOLA H, et al. Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions[J]. Forest Ecology & Management, 2006, 232(1-3): 152-167. https://www.sciencedirect.com/science/article/pii/S0378112706003860
    [8]
    LAL R. Forest soils and carbon sequestration[J]. Forest Ecology and Management, 2005, 220(1): 242-258. https://www.sciencedirect.com/science/article/pii/S0378112705004834
    [9]
    国家林业局.森林土壤有机质的测定及碳氮比的计算: LY/T-1237—1999[S].北京: 中国标准出版社, 1999.

    State Forestry Administration. Determination of organic matter in forest soil and calculation carbon-nitrogen ration: LY/T-1237—1999[S]. Beijing: China Standards Press, 1999.
    [10]
    李燕, 张建国, 段爱国, 等.杉木人工林生物量估算模型的选择[J].应用生态学报, 2010, 21(12): 3036-3046. http://d.old.wanfangdata.com.cn/Periodical/yystxb201012006

    LI Y, ZHANG J G, DUAN A G, et al. Selection of biomass estimation models for Chinese fir plantation[J]. Chinese Journal of Applied Ecology, 2010, 21(12): 3036-3046. http://d.old.wanfangdata.com.cn/Periodical/yystxb201012006
    [11]
    杨旭东.贵州省东南部常见森林类型含碳率分析[J].贵州林业科技, 2015, 43(3): 9-14. http://d.old.wanfangdata.com.cn/Conference/8054913

    YANG X D. Carbon content of common forest types in southeastern Guizhou Province[J]. Guizhou Forestry Science and Technology, 2015, 43(3): 9-14. http://d.old.wanfangdata.com.cn/Conference/8054913
    [12]
    刘延惠, 丁访军, 崔迎春, 等.黔中地区不同林龄杉木人工林碳储量及其分配特征[J].水土保持学报, 2015, 29(4): 278-283.

    LIU Y H, DING F J, CUI Y C, et al. Carbon storage and its allocation characters of Chinese fir plantation in different stand ages in the middle part of Guizhou[J]. Journal of Soil and Water Conservation, 2015, 29(4): 278-283.
    [13]
    BUSSE M D, COCHRAN P H, BARRETT J W. Changes in ponderosa pine site productivity following removal of understory vegetation[J]. Soil Science Society of America Journal, 1996, 60(6): 1614-1621. doi: 10.2136/sssaj1996.03615995006000060004x
    [14]
    MISSON L, TANG J, MING X, et al. Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation[J]. Agricultural & Forest Meteorology, 2005, 130(3-4): 207-222.
    [15]
    SHAN J, MORRIS L A, HENDRICK R L. The effects of management on soil and plant carbon sequestration in slash pine plantations[J]. Journal of Applied Ecology, 2001, 38(5): 932-941. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1046/j.1365-2664.2001.00648.x
    [16]
    林开敏, 洪伟, 俞新妥, 等.杉木幼林抚育技术的综合评价和决策[J].林业科学, 2001, 37(5): 49-56. doi: 10.3321/j.issn:1001-7488.2001.05.009

    LIN K M, HONG W, YU X T, et al. Synthetical evaluation and stratege of tending techniques in young Chinese fir plantation[J]. Scientia Silvae Sinicae, 2001, 37(5): 49-56. doi: 10.3321/j.issn:1001-7488.2001.05.009
    [17]
    JANDL R, LINDNER M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration[J]. Geoderma, 2007, 137(3): 253-268. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023214532/
    [18]
    JOHNSON D W. Effects of forest management on soil carbon storage[J]. Water Air & Soil Pollution, 1992, 64: 83-120. doi: 10.1007/BF00477097
    [19]
    MOTAVALLI P P, DISCEKICI H, KUHN J. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer[J]. Agriculture Ecosystems & Environment, 2000, 79(1): 17-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=67d1faeb56b463b701a137e9c604cf46
    [20]
    CLEMMENSEN K E, BAHR A, OVASKAINEN O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 2013, 339: 1615-1618. doi: 10.1126/science.1231923
    [21]
    吴亚丛, 李正才, 程彩芳, 等.林下植被抚育对樟人工林生态系统碳储量的影响[J].植物生态学报, 2013, 37(2): 142-149. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201302006

    WU Y C, LI Z C, CHENG C F, et al. Effects of understory removal on forest carbon storage in Cinnamomum camphora plantation ecosystem[J]. Chinese Journal of Plant Ecology, 2013, 37(2): 142-149. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201302006
  • Related Articles

    [1]Zhang Houjiang, Li Yufeng. Content and research progress in nondestructive testing of wooden structures in ancient architecture[J]. Journal of Beijing Forestry University, 2024, 46(4): 1-13. DOI: 10.12171/j.1000-1522.20240015
    [2]Ye Qi, Guan Cheng, Zhang Houjiang, Gong Yingchun, Sui Yongfeng, Liu Lige. Optimization of finger joint parameters and nondestructive testing of bending properties of radiata pine laminates[J]. Journal of Beijing Forestry University, 2022, 44(3): 148-160. DOI: 10.12171/j.1000-1522.20210351
    [3]Li Huan, Guan Cheng, Zhang Houjiang, Liu Jinhao, Zhou Jianhui, Xin Zhenbo. Determining modulus of elasticity of full-size plywood panel simply supported on two opposite sides using a vibration method[J]. Journal of Beijing Forestry University, 2021, 43(2): 138-149. DOI: 10.12171/j.1000-1522.20200300
    [4]WANG Yun-lu, WANG Zheng, LI Min-min, CAO Yu. Discussion on static testing method of material MDF constants of elastic modulus, Poisson's ratio and shear modulus[J]. Journal of Beijing Forestry University, 2017, 39(10): 117-121. DOI: 10.13332/j.1000-1522.20170107
    [5]FENG Li, QIN Nan. Dominant factor analysis of dynamic Young modulus of poplar LVL.[J]. Journal of Beijing Forestry University, 2012, 34(4): 146-148.
    [6]ZHANG Hou-jiang, GUO Zhi-ren, John F Hunt, FU Feng. Measuring modulus of elasticity for thin wood composites using a dynamic method[J]. Journal of Beijing Forestry University, 2010, 32(2): 149-152.
    [7]ZHAN Jianfeng, GU Jiyou, CAI Yingchun.. Dynamic viscoelastic characteristics of larch timber during conventional drying process. [J]. Journal of Beijing Forestry University, 2009, 31(1): 125-129.
    [8]JIANG Jiali, LV Jian-xiong.. Dynamic viscoelastic properties of drying treated wood.[J]. Journal of Beijing Forestry University, 2008, 30(3): 96-100.
    [9]JIANG Jia-li, LÜ Jian-xiong, ZHAO Guang-jie. Viscoelastic properties of wood treated by different reagents[J]. Journal of Beijing Forestry University, 2006, 28(1): 88-92.
    [10]ZHANG Hou-jiang, SHEN Shi-jie, CUI Ying-ying, MIAO Yi, WANG Ying-kun. Measuring elastic modulus of wood using vibration method[J]. Journal of Beijing Forestry University, 2005, 27(6): 91-94.
  • Cited by

    Periodical cited type(9)

    1. 辛守英,王晓红,焦琳琳. 基于遥感数据和优化Blending算法的人工林地上生物量估算研究. 西北林学院学报. 2025(02): 207-219 .
    2. 郝君,吕康婷,胡天祺,王云阁,徐刚. 基于机器学习的红树林生物量遥感反演研究. 林草资源研究. 2024(01): 65-72 .
    3. 李敏,陈利,李静泰,闫丹丹,刘垚,吴翠玲,栾兆擎. 基于Sentinel-2数据的互花米草地上生物量反演. 海洋环境科学. 2024(03): 386-397 .
    4. 廖易,张加龙,鲍瑞,许冬凡. 基于Landsat的高山松地上生物量动态变化估测模型构建. 西南林业大学学报(自然科学). 2023(01): 117-125 .
    5. 郭芮,伏帅,侯蒙京,刘洁,苗春丽,孟新月,冯琦胜,贺金生,钱大文,梁天刚. 基于Sentinel-2数据的青海门源县天然草地生物量遥感反演研究. 草业学报. 2023(04): 15-29 .
    6. 廖易,张加龙,鲍瑞,许冬凡,王书贤,韩冬阳. 引入地形因子的高山松地上生物量动态估测. 生态学杂志. 2023(05): 1243-1252 .
    7. 王熙媛,张王菲,李云,杨仙保. 依据光学遥感特征优选的森林地上生物量反演. 东北林业大学学报. 2022(04): 47-54 .
    8. 陈园园,张晓丽,高显连,高金萍. 基于Sentinel-1和Sentinel-2A的西小山林场平均树高估测. 应用生态学报. 2021(08): 2839-2846 .
    9. 陈小芳,李军,李新伟,周毅. 基于高光谱的水稻生物量估测模型研究. 安徽科技学院学报. 2021(05): 53-59 .

    Other cited types(11)

Catalog

    Article views (1706) PDF downloads (43) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return