• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
HAN Shi-jie, WANG Qing-gui. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1-20. DOI: 10.13332/j.1000-1522.20160046
Citation: HAN Shi-jie, WANG Qing-gui. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1-20. DOI: 10.13332/j.1000-1522.20160046

Response of boreal forest ecosystem to global climate change: a review

More Information
  • Received Date: February 09, 2016
  • Published Date: April 29, 2016
  • The boreal forest, one of the largest biomes on the Earth, encompasses ~30% of the global forest area and provides ecosystem services that benefit society at levels ranging from local to global. Warming since the 1850s increases the annual mean temperature from 2000 to 2050 at least 2 ℃ or even more. Annual winter mean temperatures across the boreal zone could be 1.3-6.3 ℃ warmer than today’s by 2100. In the meantime, all aspects of boreal forest ecosystem function are likely to be affected. For about several decades, there have been many events of the potential ecological response in boreal regions to the currently warmer conditions. In this paper, we review the response of boreal forest ecosystem to the global climate change, such as carbon cycle, biodiversity, aridification, forest fire disturbance and permafrost. The different responses of boreal forest ecosystem to global climate change are as follows. 1) The impact of climate change on the boreal forest carbon cycle dynamic is very complicated, and so far it has not reached a consensus, there still exist a lot of uncertainties about the decomposition to reaction sensitivity of temperature. 2) The animals, plants and microorganisms (fungi) have produced a certain response to climate change, demonstrated by that the distribution of animals and plants moves further north, but the response mechanism of the fungal diversity and productivity to the climate change remains unclear. 3) The change of boreal forests with climate change tends to be further drought and an increasing number of forest fire events. 4) There is a symbiotic relationship between boreal forests and the permafrost, and the distribution of permafrost tends to be shrinking and the thickness of active layer is deepening with the climate warming. Collectively, the response of boreal forest to climate change is very obvious, and its trend is clearer although some mechanisms have not been disclosed yet so far. The purpose of this paper is to provide basic data and technical support for the operation and management of the boreal forests, in order to achieve sustainable management for boreal forests.
  • [1]
    GOWER S T, KRANKINA O, OLSON R J, et al. Net primary production and carbon allocation patterns of boreal forest ecosystems[J]. Ecological Applications, 2001, 11:1395-1411.
    [1]
    RYAN M B, CLARA A, RASMUS A, et al. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway[J]. Global Change Biology, 2014,20:607-621. DOI: 10.1111/gcb.12451.
    [2]
    GAUTHIER S, BERNIER P, KUULUVAINEN T, et al.Boreal forest health and global change[J]. Science, 2015, 349:819-822. DOI: 10.1126/science.aaa9092.
    [3]
    BAUMGARTNER A. Climatic variability and forestry[C]∥Proceedings of the World Climate Conference. Geneva: World Meteorological Organization, 1979:581-607.
    [4]
    STOCKS B J, LYNHAM T J. Fire weather climatology in Canada and Russia[M]∥GOLDAMMER J G, FURYAEV V V. Fire in ecosystems of boreal Eurasia. Boston: Kluwer Academic Publishers, 1996: 481-494.
    [5]
    BRANDT J P, FLANNIGAN M D, MAYNARD D G, et al. An introduction to Canadas boreal zone: ecosystem processes, health, sustainability, and environmental issues[J].Environmental Reviews, 2013, 21:207-226. DOI: org/10.1139/er-2013-0040.
    [6]
    LARSEN J A. The boreal ecosystem[M]. New York: Academic Press, 1980.
    [7]
    HARE F K, RITCHIE J C. The boreal bioclimates[J]. Geographical Review, 1972, 62:333-365.
    [8]
    VIERECK L A, SCHANDELMEIER L H. Effects of fire in Alaska and adjacent Canada: a literature review[R]∥Alaska technical report 6. Anchorage: US Department of the Interior, Bureau of Land Management, Alaska State Office, 1980.
    [9]
    HEINSELMAN M L. Fire and succession in the conifer forests of northern North America[M]∥WEST D C, SHUGART H H, BOTKIN D B. Forest succession: concepts and application. New York: Springer-Verlag, 1981: 374-405.
    [10]
    BONAN G B. A computer-model of the solar-radiation, soil moisture, and soil thermal regimes in boreal forests[J]. Ecological Modelling, 1989, 45(4): 275-306.
    [11]
    BONAN G B, SHUGART H H. Environmental-factors and ecological processes in boreal forests[J]. Annual Review of Ecology and Systematics,1989,20:1-28.
    [12]
    SOJA A J, TCHEBAKOVA N M, FRENCH N H F, et al. Climate-induced boreal forest change: predictions versus current observations[J]. Global and Planetary Change,2007,56: 274-296.
    [13]
    DAVID T, PRICE R I, ALFARO K J, et al. Anticipating the consequences of climate change for Canadas boreal forest ecosystems[J]. Environmental Reviews, 2013, 21: 322-365.
    [14]
    ELMHAGEN B, KINDBERG J, HELLSTROM P, et al. A boreal invasion in response to climate change: range shifts and community effects in the borderland between forest and tundra[J]. AMBIO,2015, 44(Suppl. 1):39-50.
    [15]
    APRIL M, MELVIN, MICHELLE C, et al. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a Mid-Successional Boreal Forest[J]. Ecosystems,2015,18: 1472-1488.
    [16]
    APPS M J, KURZ W A, LUXMOORE R J, et al. Boreal forests and tundra[J]. Water, Air and Soil Pollution, 1993,70 (1-4): 39-53.
    [17]
    MCGUIRE A D, MELILLO J W, KICKLIGHTER D W, et al. Equilibrium responses of soil carbon to climate change: empirical and process-based estimates[J]. Journal of Biogeography,1995,22:785-796.
    [18]
    ZOLTAI S C, MARTIKAINEN P J. The role of forested peatlands in the global carbon cycle[C]∥APPS M J, PRICE D T. Forest ecosystems, forest management and the global carbon cycle. Heidelberg: Springer-Verlag, 1996: 47-58.
    [19]
    ALEXEYEV V A, BIRDSEY R A. Carbon storage in forests and peatlands of Russia[R]. Delaware: Forest Service Northeastern Research Station, 1998: 24.
    [20]
    SEPPL R, BUCK A, KATILA P. Adaptation of forests and people to climate change: a global assessment report [R]. Helsinki: International Union of Forest Research Organizations (IUFRO) World Series, 2009.
    [21]
    ZUBIZARRETA-GERENDIAIN A, PUKKALAT T, KELLOMKI S,et al. Effects of climate change on optimised stand management in the boreal forests of central Finland[J]. European Journal of Forest Research, 2015, 134:273-280.
    [22]
    STOCKER T F, QIN D, PLATTNER G K, et al. Climate change: the physical science basis[M]. Cambridge: Cambridge University Press,2013.
    [23]
    HANSEN J R, RUEY M, SATO M, et al. Global surface air temperature in 1995: return to pre-pinatubo level[J]. Geophysical Research Letters, 1996,23:1665-1668.
    [24]
    BALLING R C, MICHAELS P J, KNAPPENBERGER P C. Analysis of winter and summer warming rates in gridded temperature time series[J]. Climate Research,1998,9:175-181.
    [25]
    SERREZE M C, WALSH J E, CHAPIN III F S,et al. Observational evidence of recent change in the northern high-latitude environment[J]. Climate Change, 2000,46:159-207.
    [26]
    HOUGHTON J T, DING Y, GRIGGS D J, et al. Climate change 2001: the scientific basis[M]. New York: Cambridge University Press, 2001.
    [27]
    ACIA. Impacts of a warming arctic[M]. Cambridge: Cambridge University Press, 2004.
    [28]
    STOCKS B J, FOSBERG M A, WOTTON M B, et al. Climate change and forest fire activity in North American boreal forests[M]∥ KASISCHKE E S, STOCKS B J. Fire, climate change, and carbon cycling in the boreal forest. New York: Springer-Verlag, 2000:368-376.
    [29]
    GROISMAN P Y, SHERSTYUKOV B G, RAZUVAEV V N, et al. Potential forest fire danger over northern Eurasia: changes during the 20th century[J]. Global and Planetary Change,2007, 56:371-386.
    [30]
    POST E, FORCHHAMMER M C, BRET-HARTE M S, et al. Ecological dynamics across the Arctic associated with recent climate change[J]. Science, 2009,325: 1355-1358.
    [31]
    KURZ W A, APPS M J, STOCKS B J, et al. Global climate change: disturbance regimes and biospheric feedbacks of temperate and boreal forests[M]∥WOODWELL G M, MACKENZIE F T. Biotic feedbacks in the global climate system: will the warming feed the warming?. New York:Oxford University Press, 1995:119-133.
    [32]
    HARDEN J W, TRUMBORE S E, STOCKS B J, et al. The role of fire in the boreal carbon budget[J]. Global Change Biology,2000,6:174-184.
    [33]
    KASISCHKE E S, STOCKS B J. Fire, climate change, and carbon cycling in the boreal forest[M]∥KASISCHKE E S, STOCKS B J. Ecological studies. New York: Springer-Verlag, 2000: 461.
    [34]
    FRENCH N N F. The impact of fire disturbance on carbon and energy exchange in the Alaskan Boreal Region: a geospatial data analysis[D]. Ann Arbor: University of Michigan, 2002:105.
    [35]
    SOJA A J, COFER III W R, SHUGART H H, et al. Estimating fire emissions and disparities in boreal Siberia (1998 through 2002)[J]. Journal of Geophysical Research, 2004,109 (D14S06). DOI: 10.1029/2004JD004570.
    [36]
    BALZTER H, GERARD F F, GEORGE C T, et al. Impact of the Arctic Oscillation pattern on interannual forest fire variability in central Siberia[J]. Geophysical Research Letters, 2005,32(14). DOI: 10.1029/2005GL022526.
    [37]
    LEMRIRE T C, KURZ W A, HOGG E H, et al. Canadian boreal forests and climate change mitigation[J]. Environmental Reviews,2013,21: 293-321.
    [38]
    PAN Y, BIRDSEY Y, FANG R A, et al.A large and persistent carbon sink in the worlds forests[J]. Science, 2011, 333: 988-993. DOI: 10.1126/science.1201609.
    [39]
    PETERS G P, MARLAND G, LE QUERE C, et al. Rapid growth in CO2 emissions after the 2008-2009 global financial crisis[J]. Nature Climate Change, 2012,2(1): 2-4. DOI: 10.1038/nclimate1332.
    [40]
    LE QUERE C, RAUPACH M R, CANADELL J G, et al. Trends in the sources and sinks of carbon dioxide[J]. Nature Geosci, 2009,2(12):831-836. DOI: 10.1038/ngeo689.
    [41]
    SARMIENTO J L, GLOOR M, GRUBER N, et al. Trends and regional distributions of land and ocean carbon sinks[J]. Biogeosciences, 2010,7(8): 2351-2367. DOI: 10.5194/bg-7-2351-2010.
    [42]
    KURZ W A, SHAW C H, BOISVENUE C,et al. Carbon in Canadas boreal forest: a synthesis[J]. Environmental Reviews, 2013, 21(4): 260-292.DOI: 10.1139/er-2013-0041.
    [43]
    MILAKOVSKY B, FREY B, JAMES T. Carbon dynamics in the boreal forest[M]∥ASHTON M S, TYRRELL M L, SPALDING D, et al. Managing forest carbon in a changing climate. New York: Springer Science Business Media, 2012: 109-135.
    [44]
    LI Z, KURZ W A, APPS M J. Belowground biomass dynamics in the carbon budget model of the Canadian forest sector: recent improvements and implications for the estimation of NPP and NEP[J]. Canadian Journal of Forest Research, 2003,33(1):126-136. DOI: 10.1139/x02-165.
    [45]
    KURZ W A, DYMOND C C, WHITE T M. CBM-CFS3: a model of carbon-dynamics in forestry and landuse change implementing IPCC standards[J]. Ecological Modelling, 2009,220(4):480-504. DOI:10. 1016/j.ecolmodel.2008.10.018.
    [46]
    ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010,259(4):660-684. DOI:10.1016/j. foreco.2009.09.001.
    [47]
    BOISVENUE C, RUNNING S W. Impacts of climate change on natural forest productivityevidence since the middle of the 20th century[J]. Global Change Biolology,2006,12:1-21. DOI: 10.1111/j.1365-2486.2005.001080.x.
    [48]
    MICHAELIAN M, HOGG E H, HALL R J, et al. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest[J]. Global Change Biology,2011, 17:2084-2094. DOI:10. 1111/j.1365-2486.2010.02357.x.
    [49]
    HEMBER R A, KURZ W A, METSARANTA J M, et al. Accelerated regrowth of temperate-maritime forests due to environmental change[J]. Global Change Biology,2012,18:2026-2040. DOI:10.1111/j.1365-2486. 2012.02669.x.
    [50]
    MAGNANI F, MENCUCCINI M, BORGHETTI M, et al. The human footprint in the carbon cycle of temperate and boreal forests[J]. Nature, 2007, 447:849-851. DOI: 10.1038/nature05847.
    [51]
    BRIFFA K R, SHISHOV V V, MELVIN T M, et al. Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2008,363:2269-2282. DOI: 10.1098/rstb.2007.2199.
    [52]
    HICKLER T, SMITH B, PRENTICE I C, et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests[J]. Global Change Biology, 2008,14(7): 1531-1542. DOI:10. 1111/j.1365-2486.2008.01598.x.
    [53]
    BOISVENUE C, BERGERON Y, BERNIER P, et al. Simulations show potential for reduced emissions and carbon stocks increase in boreal forests under ecosystem management[J]. Carbon Management, 2012,3(6):553-568. DOI: 10.4155/cmt.12.57.
    [54]
    LAFLEUR B, PARE D, MUNSON A D,et al. Response of northeastern North American forests to climate change: will soil conditions constrain tree species migration?[J]. Environmental Reviews,2010,18: 279-289. DOI: 10.1139/A10-013.
    [55]
    BECK P S A, JUDAY G P, ALIX C, et al. Changes in forest productivity across Alaska consistent with biome shift[J]. Ecology Letters,2011, 14: 373-379. DOI: 10.1111/j.1461-0248.2011.01598.x.
    [56]
    COLE C T, ANDERSON J E, LINDROTH R L, et al. Rising concentrations of atmospheric CO2 have increased growth in natural stands of quaking aspen (Populus tremuloides)[J]. Global Change Biolology, 2010, 16: 2186-2197. DOI: 10.1111/j.1365-2486.2009.02103.x.
    [57]
    PAQUETTE A, MESSIER C. The effect of biodiversity on tree productivity: from temperate to boreal forests[J]. Global Ecology and Biogeography,2011,20(1):170-180.DOI:10.1111/j.1466-8238.2010. 00592.x.
    [58]
    MCLANE S C, DANIELS L D, AITKEN S N, et al. Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment[J]. Forest Ecology and Management, 2011,262(2): 115-123. DOI: 10.1016/j.foreco.2011.03.007.
    [59]
    CYR D, GAUTHIER S, BERGERON Y, et al. Forest management is driving the eastern North American boreal forest outside its natural range of variability[J]. Frontiers in Ecology and the Environment, 2009, 7(10): 519-524. DOI: 10.1890/080088.
    [60]
    ALLEN M R, FRAME D J, HUNTINGFORD C, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne[J]. Nature, 2009, 458: 1163-1166. DOI: 10.1038/nature08019.
    [61]
    VAN MANTGEM P J, STEPHENSON N L, BYRNE J C, et al. Widespread increase of tree mortality rates in the western United States[J]. Science, 2009,323: 521-524. DOI: 10.1126/science.1165000.
    [62]
    ZHAO M, RUNNING S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010,329:940-943. DOI: 10.1126/science.1192666.
    [63]
    STURROCK R N, FRANKEL S J, BROWN A V, et al. Climate change and forest diseases[J]. Plant Pathology,2011,60(1): 133-149. DOI: 10.1111/j.1365-3059.2010.02406.x.
    [64]
    HICKE J A, ALLEN C D, DESAI A R, et al. Effects of biotic disturbances on forest carbon cycling in the United States and Canada[J]. Global Change Biology,2012,18:7-34. DOI: 10.1111/j.1365-2486.2011.02543.x.
    [65]
    MCLANE S C, LEMAY V M, AITEN S N. Modeling lodgepole pine radial growth relative to climate and genetics using universal growth-trend response functions[J]. Ecological Applications,2011,21(3): 776-788. DOI: 10.1890/10-0131.1.
    [66]
    PENG C, MA Z, LEI X, et al. A drought-induced pervasive increase in tree mortality across Canadas boreal forests[J]. Nature Climate Change, 2011,1(9): 467-471. DOI: 10.1038/nclimate1293.
    [67]
    MA Z, PENG C, ZHU Q, et al. Regional drought-induced reduction in the biomass carbon sink of Canadas boreal forests[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(7): 2423-2427. DOI: 10.1073/pnas.1111576109.
    [68]
    SMITH B, SAMUELSSON P, WRAMNEBY A, et al. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications[J]. Tellus Series A-dynamic Meteorology and Oceanography, 2011, 63(1): 87-106. DOI: 10.1111/j.1600-0870.2010.00477.x.
    [69]
    SCHNEIDER R R, HAMANN A, FARR D, et al. Potential effects of climate change on ecosystem distribution in Alberta[J]. Canadian Journal of Forest Research, 2009,39(5):1001-1010.DOI:10.1139/ X09-033.
    [70]
    NATHAN R, HORVITZ N, HE Y, et al. Spread of North American wind-dispersed trees in future environments[J]. Ecology Letters,2011,14:211-219. DOI: 10.1111/j.1461-0248.2010.01573.x.
    [71]
    LOEHLE C. Forest response to climate change: do simulations predict unrealistic dieback?[J]. Journal of Forest,1996,94(9): 13-15.
    [72]
    LEITHEAD M, ANAND M, SILVA L. Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal ecotone, Ontario, Canada[J]. Oecologia, 2010,164(4):1095-1106.DOI:10. 1007/s00442-010-1769-z.
    [73]
    CLASSEN A T, NORBY R J, CAMPANY C E, et al. Climate change alters seedling emergence and establishment in an old-field ecosystem[J].PLoS ONE,2010,5(10):e13476. DOI:10.1371/journal.pone. 0013476
    [74]
    JOHNSTONE J F, CHAPIN F S III. Effects of soil burn severity on postfire tree recruitment in boreal forests[J]. Ecosystems, 2006,9(1):14-31. DOI: 10.1007/s10021-004-0042-x.
    [75]
    JOHNSTONE J F, CHAPIN F S III. Fire interval effects on successional trajectory in boreal forests of northwest Canada[J]. Ecosystems, 2006, 9(2): 268-277.DOI: 10.1007/s10021-005-0061-2.
    [76]
    MBOGGA M S, WANG X, HAMANN A. Bioclimate envelope model predictions for natural resource management: dealing with uncertainty[J]. Journal of Applied Ecology,2010,47(4):731-740. DOI: 10.1111/j.1365-2664.2010.01830.x.
    [77]
    AITKEN S N, YEAMAN S, HOLLIDAY J A, et al. Adaptation, migration or extirpation: climate change outcomes for tree populations[J]. Evolutionary Applications,2008,1(1):95-111. DOI:10.1111/j. 1752-4571.2007.00013.x.
    [78]
    TRINDADE M, BELL T, LAROQUE C. Changing climatic sensitivities of two spruce species across a moisture gradient in Northeastern Canada[J]. Dendrochronologia, 2011,29(1): 25-30. DOI: 10.1016/j.dendro.2010.10.002.
    [79]
    IPCC. Climate change 1995: the science of climate change[M].New York: Cambridge University Press, 1996:572.
    [80]
    DESANTIS R D, HALLGREN S W, STAHLE D W. Drought and fire suppression lead to rapid forest composition change in a forest-prairie ecotone[J]. Forest Ecology and Management, 2011,261(11):1833-1840. DOI: 10.1016/j.foreco.2011.02.006.
    [81]
    GIRARD F, PAYETTE S, GAGNON R. Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada[J]. Journal of Biogeography, 2008,35(3): 529-537.DOI: 10.1111/j.1365-2699.2007.01816.x.
    [82]
    BERNIER P Y, DESJARDINS R L, KARIMI-ZINDASHTY Y, et al. Boreal lichen woodlands: a possible negative feedback to climate change in eastern North America[J]. Agricultural and Forest Meteorology, 2011,151(4): 521-528. DOI: 10.1016/j.agrformet.2010.12.013.
    [83]
    SMITH M. Alpine treelines: functional ecology of the global high elevation tree limits[J]. Mountain Research and Development, 2013,33:357.
    [84]
    HARSCH M A, HULME P E, MCGLONE M S, et al. Are treelines advancing: a global meta-analysis of treeline response to climate warming[J]. Ecology Letters,2009,12:1040-1049.
    [85]
    FRASER R H, OLTHOF I, CARRIERE M, et al. Detecting long-term changes to vegetation in northern Canada using the landsat satellite image archive[J]. Environmental Research Letters, 2011,6:045502. DOI:10. 1088/1748-9326/6/4/045502.
    [86]
    MCMANUS K M, MORTON D C, MASEK J G, et al. Satellite-based evidence for shrub and graminoid tundra expansion in northern Quebec from 1986-2010[J]. Global Change Biology, 2012,18(7):2313-2323. DOI:10.1111/ j.1365-2486.2012.02708.x.
    [87]
    PELTONIEMI M, THURING E, OGLE S, et al. Models in country scale carbon accounting of forest soils[J]. Silva Fennica,2007,41(3): 575-602.
    [88]
    KNORR M, FREY S D, CURTIS P S. Nitrogen additions and litter decomposition: a meta-analysis[J]. Ecology, 2005,86(12): 3252-3257. DOI: 10.1890/05-0150.
    [89]
    GIARDINA C P, RYAN M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000,404: 858-861. DOI: 10.1038/35009076.
    [90]
    GAUMONT-GUAY D, BLACK T A, BARR A G, et al. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand[J]. Tree Physiology, 2008, 28(2): 161-171. DOI: 10.1093/treephys/28.2.161.
    [91]
    FISSORE C, GIARDINA C P, KOLKA R K, et al. Soil organic carbon quality in forested mineral wetlands at different mean annual temperature[J]. Soil Biology and Biochemistry,2009, 41(3): 458-466. DOI:10.1016/j. soilbio.2008.11.004.
    [92]
    DUNGAIT J A J, HOPKINS D W, GREGORY A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012,18:1781-1796. DOI:10.1111/j.1365-2486.2012. 02665.x.
    [93]
    ALLISON S D, WALLENSTEIN M D, BRADFORD M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010,3(5): 336-340.DOI: 10.1038/ngeo846.
    [94]
    CONANT R T, RYAN M G, GREN G I, et al. Temperature and soil organic matter decomposition rates: synthesis of current knowledge and a way forward[J]. Global Change Biology, 2011, 17: 3392-3404. DOI: 10.1111/j.1365-2486.2011.02496.x.
    [95]
    SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011,478: 49-56. DOI: 10.1038/nature10386.
    [96]
    ZHANG Y, CHEN W, SMITH S L, et al. Soil temperature in Canada during the twentieth century: complex responses to atmospheric climate change[J]. Journal of Geophysical Research, 2005, 110: D03112. DOI:10. 1029/ 2004 JD 004 910.
    [97]
    HELAMA S, TUOMENVIRTA H, VENLINEN A. Boreal and subarctic soils under climatic change: global planet[J]. Change, 2011,79(1-2): 37-47. DOI: 10.1016/j.gloplacha.2011.08.001.
    [98]
    HENNON P E, DAMORE D V, SCHABERG P G, et al. Shifting climate, altered niche, and a dynamic conservation strategy for yellow-cedar in the North Pacific coastal rainforest[J]. Bioscience, 2012, 62(2): 147-158. DOI: 10.1525/bio.2012.62.2.8.
    [99]
    SCHUUR E A G, ABBOTT B. Climate change: high risk of permafrost thaw[J]. Nature, 2011,480: 32-33. DOI: 10.1038/480032a.
    [100]
    SCHUUR E A G, VOGEL J G, CRUMMER K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009,459:556-559. DOI: 10.1038/nature08031.
    [101]
    ODONNELL J A, JORGENSON M T, HARDEN J W, et al. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland[J]. Ecosystems, 2012,15:213-229. DOI: 10.1007/s10021-011-9504-0.
    [102]
    SCHAPHOFF S, HEYDER U, OSTBERG S, et al. Contribution of permafrost soils to the global carbon budget[J]. Environmental Research Letters,2013,8: 014026. DOI: 10.1088/1748-9326/8/1/014026.
    [103]
    KUPARINEN A, KATUL G, NATHAN R, et al. Increases in air temperature can promote wind-driven dispersal and spread of plants[J]. Proceedings Research Society Series Bontany,2009,276: 3081-3087. DOI: 10.1098/rspb.2009.0693.
    [104]
    MIDGLEY G F, DAVIES I D, ALBERT C H, et al. BioMove: an integrated platform simulating the dynamic response of species to environmental change[J]. Ecography, 2010,33(3): 612-616. DOI:10.1111/j.1600-0587. 2009.06000.x.
    [105]
    HOF C, LEVINSKY I, ARAJO M B, et al. Rethinking species ability to cope with rapid climate change[J]. Global Change Biology,2011,17: 2987-2990. DOI: 10.1111/j.1365-2486.2011.02418.x.
    [106]
    ZHU K, WOODALL C W, GHOSH S, et al. Dual impacts of climate change: forest migration and turnover through life history[J]. Global Change Biology,2013,20:251-264. DOI: 10.1111/gcb.12382.
    [107]
    MALCOLM J R, MARKHAM A, NEILSON R P, et al. Estimated migration rates under scenarios of global climate change[J]. Journal of Biogeography, 2002,29: 835-849.DOI:10.1046/ j.1365-2699.2002.00702.x.
    [108]
    MCKENNEY D W, PEDLAR J H, ROOD R B, et al. Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models[J]. Global Change Biology, 2011,17: 2720-2730. DOI: 10.1111/j.1365-2486.2011.02413.x.
    [109]
    PATRY C, OUTERBRIDGE R O, HOLMES S B, et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests[J]. Environmental Reviews,2014, 22, 457-490. DOI.org/ 10.1139/er-2013-0075.
    [110]
    BOUCHER Y, ARSENEAULT D, SIROIS L. Logging history (1820-2000) of a heavily exploited southern boreal forest landscape: insights from sunken logs and forestry maps[J]. Forest Ecology and Management,2009, 258(7): 1359-1368. DOI: 10.1016/j.foreco.2009.06.037.
    [111]
    BOUCHER Y, ARSENEAULT D, SIROIS L, et al. Logging pattern and landscape changes over the last century at the boreal and deciduous forest transition in eastern Canada[J]. Landscape Ecology,2009, 24(2): 171-184. DOI: 10.1007/s10980-008-9294-8.
    [112]
    VIRKKALA R, HEIKKINEN R K, LEIKOLA N, et al. Projected largescale range reductions of northern-boreal land bird species due to climate change[J].Biological Conservation, 2008, 141(5): 1343-1353. DOI: 10.1016/j.biocon.2008.03.007.
    [113]
    THOMAS C, LENNON J. Birds extend their ranges northwards[J].Nature,1999, 399:213. DOI: 10.1038/20335.
    [114]
    LA PORTA N, CAPRETTI P, THOMSEN I M, et al.Forest pathogens with higher damage potential due to climate change in Europe[J]. Canadian Journal of Plant Pathology,2008, 30: 177-195. DOI: 10.1080/07060661.2008.10540534.
    [115]
    MOORE B, ALLARD G. Climate change impacts on forest health[R]. Rome: Food and Agriculture Organization of the United Nations,2008.
    [116]
    DUKES J S, PONTIUS J, ORWIG D, et al. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? [J]Canadian Journal of Forest Research,2009, 39(2): 231-248. DOI: 10.1139/X08-171.
    [117]
    KLIEJUNAS J T, GEILS B W, GLAESER J M, et al. Review of literature on climate change and forest diseases of western North America[Z]∥General Technical Report: PSW-GTR-225. Albany: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, 2009.
    [118]
    TUBBY K V, WEBBER J F. Pests and diseases threatening urban trees under a changing climate[J]. Forestry, 2010, 83(4): 451-459. DOI: 10.1093/forestry/cpq027.
    [119]
    MCGUIRE K L, ALLISON S D, TRESEDER K K.Spatial segregation of ectomycorrhizal and saprotrophic fungi in boreal and tropical forest soils[C]∥Proceedings of 93rd ESA Annual Meeting. Milwaukee: Ecological Society of America, 2008.
    [120]
    KRANABETTER J M, DURALL D M, MACKENZIE W H. Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest[J]. Mycorrhiza,2009, 19: 99-111. DOI: 10.1007/s00572-008-0208-z.PMID:18941804.
    [121]
    MONTEITH J L, UNSWORTH M H. Principles of environmental physics[M]. 3rd ed. Amsterdam: Academic Press, 2008.
    [122]
    HOGG E H, SCHWARZ A G. Regeneration of planted conifers across climatic moisture gradients on the Canadian prairies: implications for distribution and climate change[J].Journal of Biogeography, 1997, 24: 527-534. DOI: 10.1111/j.1365-2699.1997.00138.x.
    [123]
    PARISIEN M A, PARKS S A, KRAWCHUK M A, et al. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005[J]. Ecological Applications,2011, 21: 789-805. DOI: 10.1890/10-0326.1.PMID:21639045.
    [124]
    APPENZELLER T. The new north Stoked by climate change, fire and insects are remaking the planets vast boreal forest[J]. Science, 349: 772-773. DOI: 10.1126/science.349.6250.772.
    [125]
    AMIRO B D, TODD J B, WOTTON B M, et al. Direct carbon emissions from Canadian forest fires, 1959-1999[J]. Canadian Journal of Forest Research, 2001, 31: 512-525.
    [126]
    FLANNIGAN M D, KRAWCHUK M A, DE GROOT W J, et al. Implications of changing climate for global wild land fire[J]. International Journal of Wildland Fire,2009, 18(5): 483-507. DOI: 10.1071/WF08187.
    [127]
    周幼吴, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.
    [128]
    ZHOU Y W, GUO D X, QIU G Q, et al. Frozen ground of China[M].Beijing: Beijing Science Press, 2000.
    [129]
    TARNOCAI C, CANADELL J G, SCHUUR E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochem Cycles, 2009,23(2):GB2023. DOI: 10.1029/2008GB003327.
    [130]
    SCHUUR E A G, BOCKHEIM J, CANNDELL J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. Bioscience, 2008,58(8): 701-714.
    [131]
    SCHUUR E A, MCGUIRE A D, SCHDEL C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520: 171-179.DOI:10.1038/ nature14338.
    [132]
    KOVEN C D, LAWRENCE D M, RILEY W J. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics[J]. Proceedings of the National Academy of Sciences, 2015, 112(12): 3752-3757.
    [133]
    HULTMAN J, WALDROP M P, MACKELPRANG R, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes[J]. Nature, 2015, 521: 208-212.
    [134]
    SCHAEFER K, LANTUIT H, ROMANOVSKY V E, et al. The impact of the permafrost carbon feedback on global climate[J]. Environmental Research Letters, 2014, 9: 85003-85011.
    [135]
    OSTERKAMP T E. Characteristics of the recent warming of permafrost in Alaska[J]. Journal of Geophysical Research,2007, 112 : F02S02. DOI: 10.1029/2006JF000578.
    [136]
    PASTICKA N J, JORGENSONB M T, WYLIEC B K, et al. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions[J]. Remote Sensing of Environment, 2015, 168: 301-315.
    [137]
    CAMILL P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming[J]. Climate Change, 2005, 68 (1-2): 135-152.
    [138]
    TCHEBAKOVA N M, PARFENOVA E, SOJA A. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate[J]. Environmental Research Letters,2009, 4: 045013. DOI: 10.1088/1748-9326/4/4/045013.
    [139]
    WU Q, ZHANG T. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research,2008, 113: D13108. DOI: 10.1029/2007JD009539.
    [140]
    魏智, 金会军, 张建明, 等.气候变化条件下东北地区多年冻土变化预测[J]. 中国科学: 地球科学, 2011, 41(1): 74- 84.
    [141]
    WEI Z, JIN H J,ZHANG J M, et al. Prediction of permafrost changes in northeastern China under a changing climate [J] . Science China Earth Science, 2011, 41(1):74- 84.
    [142]
    SCHUUR E A G, ABBOTI B W, BOWDEN W B, et al. Expert assessment of vulnerability of permafrost carbon to climate change[J]. Climatic Change,2013, 119: 359-374.
    [143]
    LAWRENCE D M, SLATER A G, SWENSON S C. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4[J]. Journal of Climate, 2012, 25: 2207-2225.
    [144]
    KOVEN C D, RILEY W J,STERN A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models[J]. Journal of Climate,2012, 26: 1877-1900.
    [145]
    SMITH T E, WALL D H, HOGG I D, et al. Thawing permafrost alters nematode populations and soil habitat characteristic in an Antarctic polar desert ecosystem[J]. Pedobiologia, 2012, 55: 75-81.
    [146]
    SCHAEFER K, ZHANG T, BRUHWILER, et al. Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus Series B-Chemical and Physical Meteorology,2011, 63: 165-80.
    [147]
    BURKE E J, HARTLEY I P,JONES C D. Uncertainties in the global temperature change caused by carbon release from permafrost thawing[J]. The Cryosphere,2012, 6:1063-1076.
    [148]
    SCHNEIDER V D T, MEINSHAUSEN M, LEVERMANN A, et al. Estimating the near surface permafrost carbon feedback on global warming[J]. Biogeosciences, 2012, 9: 649-65.
    [149]
    HAYES D J, KICKLIGHTER D W, MCGUIRE A D, et al. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange [J]. Environmental Research Letters,2014, 9:045005. DOI: 10.1088/1748-9326/9/4/045005.
    [150]
    SONG C, XU X, SUN X, et al. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region[J]. Environmental Research Letters,2012, 7: 34009-34016. DOI: 10.1088/1748-9326/7/3/034009.
    [151]
    SHEN W, ZOU C, LIU D, et al. Climate-forced ecological changes over the Tibetan Plateau[J]. Cold Regions Science and Technology, 2015, 114: 27-35.
    [152]
    KURYLYK B L, MACQUARRIE K T B, MCKENZIE J M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools[J]. Earth-Science Reviews, 2014, 138: 313-334.
    [153]
    VOGEL J, SCHUUR E A G, TRUCCO C, et al. Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development[J]. Journal of Geophysical Research: Biogeosciences,2009, 114(G4). DOI: 10.1029/2008JG000901
    [154]
    NATALI S M, SCHUUR A G E, RUBIN R L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost[J]. Journal of Ecology, 2012, 100: 488-498.
    [155]
    NATALI S M, SHUUR EAG, WEBB EE,et al. Permafrost degradation stimulates carbon loss from experimentally warmed tundra[J]. Ecology, 2014, 95(3): 602-608.
    [156]
    DONNELL J A O, HARDEN J W, MCGUIRE A D, et al. Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem[J]. Biogeosciences, 2011, 8: 1367-1382.
    [157]
    YI S, MANIES K, HARDEN J, et al. Characteristics of organic soil in black spruce forests: implications for the application of land surface and ecosystem models in cold regions[J]. Geophysical Research Letters,2009,36: L05501. DOI: 10.1029/2008GL037014.
    [158]
    BALE J S , MASTERS G J, HODKINSON I D, et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores[J]. Global Change Biology,2002, 8:1-16.
    [159]
    KURZ W A, DYMOND C C, STINSON G, et al. Mountain pine beetle and forest carbon feedback to climate change[J].Nature, 2008, 452: 987-990.
    [160]
    PATANKAR R, QUINTON W L, BALTZER J L. Permafrost-driven differences in habitat quality determine plant response to gall-inducing mite herbivory[J]. Journal of Ecology, 2013,101: 1042-1052.
    [161]
    SIMMONS B L, WALL D H,ADAMS B J, et al. Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica[J]. Soil Biology Biochemistry, 2009, 41: 2052-2060.
    [162]
    FRAUENFELD O W, ZHANG T. An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes[J]. Environmental Research Letters,2011, 6: 44024-44031. DOI: 10.1088/1748-9326/6/4/044024.
    [163]
    DE BRUIJN A M G, BUTTERBACH-BAHL K, BLAGODATSKY S, et al. Model evaluation of different mechanisms driving freeze-thaw N2O emissions[J]. Agriculture Ecosystems and Environment, 2009, 133: 196-207.
    [164]
    JOSEPH G , HENRY H A L. Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field[J]. Soil Biology Biochemistry, 2008, 40: 1947-1953.
    [165]
    WEIH M, KARLSSON P S. Low winter soil temperature affects summertime nutrient uptake capacity and growth rate of mountain birch seedlings in the subarctic, Swedish lapland[J]. Arctic Antarctic and Alpine Research, 2002, 34: 434-439.
    [166]
    SULKAVA P, HUHTA V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil[J]. Applied Soil Ecology,2003, 22:225-239.
    [167]
    FITZHUGH R D, LIKENS G E, DRISCOLL C T, et al. Role of soil freezing events in interannual patterns of stream chemistry at the Hubbard Brook experimental forest, New Hampshire[J]. Environmental Science Technology, 2003, 37:1575-1580.
    [168]
    GOU X, TAN B, WU F, et al. Seasonal dynamics of soil microbial biomass C and N along an elevational gradient on the eastern Tibetan Plateau, China[J]. PLoS ONE, 2015, 10(7): e0132443. DOI: 10.1371/journal.pone.013244.
    [169]
    HENRY H A L. Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements[J]. Soil Biology Biochemistry, 2007, 39: 977-986.
    [170]
    KREYLING J, BEIERKUHNLEIN C, JENTSCH A. Effects of soil freeze-thaw cycles differ between experimental plant communities[J]. Basic and Applied Ecology, 2010, 11:65-75.
  • Cited by

    Periodical cited type(17)

    1. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    2. 李慧璇,马红亮,尹云锋,高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征. 植物生态学报. 2023(05): 618-628 .
    3. 罗国娜,车震宇. 马尾松凋落物对土壤氮循环与微生物的影响. 山东农业大学学报(自然科学版). 2023(04): 553-561 .
    4. 韦昌林,李毅,单立山,解婷婷,张鹏. 降水变化对典型荒漠植物凋落物分解的影响. 草地学报. 2022(05): 1280-1289 .
    5. Hao Qu,XueYong Zhao,XiaoAn Zuo,ShaoKun Wang,XuJun Ma,Xia Tang,XinYuan Wang,Eduardo Medina-Roldán. Litter decomposition in fragile ecosystems: A review. Sciences in Cold and Arid Regions. 2022(03): 151-161 .
    6. 王文秀,栾军伟,王一,杨怀,赵阳,李丝雨,梁昌强,孔祥河,刘世荣. 模拟干旱和磷添加对热带低地雨林叶凋落物分解的影响. 生态学报. 2022(15): 6160-6174 .
    7. 李慧业,林永慧,何兴兵. 4种内源真菌对马尾松凋落叶分解的影响. 西南农业学报. 2021(03): 618-625 .
    8. 王光燚,上官周平,方燕. 氮沉降对细根分解影响的研究进展. 水土保持研究. 2020(02): 383-391 .
    9. 舒韦维,陈琳,刘世荣,曾冀,李华,郑路,陈文军. 减雨对南亚热带马尾松人工林凋落物分解的影响. 生态学报. 2020(13): 4538-4545 .
    10. 叶贺,红梅,赵巴音那木拉,李静,闫瑾,张宇晨,梁志伟. 水氮控制对短花针茅荒漠草原根系分解的影响. 应用与环境生物学报. 2020(05): 1169-1175 .
    11. 杨晶晶,周正立,吕瑞恒,梁继业,王雄. 干旱生境下3种植物叶凋落物分解动态特征. 干旱区研究. 2019(04): 916-923 .
    12. 周书玉,袁川,王景燕,龚伟,唐海龙. 菌剂和外源氮素添加对青花椒采收剩余物分解的影响. 四川农业大学学报. 2019(06): 799-806 .
    13. 王欣,郭延朋,赵辉,孟凡军,刘国萍. 华北落叶松与白桦叶凋落物混合分解及其养分动态. 林业与生态科学. 2018(01): 29-36 .
    14. 郑欣颖,佘汉基,薛立,蔡金桓. 外源性氮和磷添加对马尾松凋落叶分解及土壤特性的影响. 生态环境学报. 2017(10): 1710-1718 .
    15. 佘汉基,蔡金桓,薛立,郑欣颖. 模拟外源性氮磷对尾叶桉和马占相思混合凋落叶分解的影响. 西北林学院学报. 2017(06): 45-52 .
    16. 蔡金桓,郑欣颖,薛立,佘汉基. 外源性氮和磷对杉木和藜蒴锥混合凋落叶分解的影响. 西南林业大学学报(自然科学). 2017(04): 103-112 .
    17. 蔡金桓,王卓敏,薛立,郑欣颖,佘汉基. 外源性氮和磷对藜蒴林凋落叶分解的影响. 中南林业科技大学学报. 2017(07): 105-111 .

    Other cited types(16)

Catalog

    Article views (2863) PDF downloads (191) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return