• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Jun-wei, HOU Man-man, HUANG Li-ya, ZHANG Jun, ZHOU Hai-cheng, CHENG Yan-xia. Phylogenetic and functional beta diversity in a broadleaved Korean pine mixed forest in Changbai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(10): 21-27. DOI: 10.13332/j.1000-1522.20160062
Citation: WANG Jun-wei, HOU Man-man, HUANG Li-ya, ZHANG Jun, ZHOU Hai-cheng, CHENG Yan-xia. Phylogenetic and functional beta diversity in a broadleaved Korean pine mixed forest in Changbai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(10): 21-27. DOI: 10.13332/j.1000-1522.20160062

Phylogenetic and functional beta diversity in a broadleaved Korean pine mixed forest in Changbai Mountains, northeastern China.

More Information
  • Received Date: March 01, 2016
  • Published Date: October 28, 2016
  • Beta diversity is an important component of biological diversity and plays a crucial role in the detecting of biodiversity. Based on the direct and indirect measure of ecological similarity, phylogenetic and functional beta diversity can provide new insights into assembly mechanisms of community ecology. To reveal the underlying ecological processes, we measured 4 functional traits of 45 woody species (maximum plant height, leaf area, specific leaf area, and leaf nitrogen contents) in a well-mapped 40 ha broadleaved Korean pine mixed forest plot in Changbai Mountains, Northeast China. Next, we calculated the functional and phylogenetic beta diversity through the Srensen index and compared observed pattern with null model approach to test for non-random functional and phylogenetic beta diversity at different spatial scales (radius 10, 20, 25, 50, and 75 m). Our results showed that: 1) the phylogenetic and functional similarity decreased with distances and increased with grain sizes. 2) All the phylogenetic and functional beta diversity showed non-random pattern. As the increase of grain size, the phylogenetic beta diversity showed random only in the 25-50 m scale, while lower than random in the scales of 10-20 m and 75 m. The functional beta diversity turned from random (10-50 m) to lower than random (75 m). The results suggest that in the middle and small scales (10-50 m), neutral process is more important, but we cannot rule out the role of niche process, and with the increase of scale, habitat filtering determines the community assembly in the broadleaved Korean pine forest. 3) The mismatch between functional and phylogenetic beta diversity patterns could be partly explained by the lack of phylogenetic signal for most traits.
  • [1]
    WHITTAKER R H. Vegetation of the Siskiyou Mountains, Oregon and California [J]. Ecological Monographs, 1960, 30:279-338.
    [1]
    RAO M D, FENG G, ZHANG J L, et al. Effects of environmental filtering and dispersal limitation on species and phylogenetic beta diversity in Gutianshan National Nature Reserve [J]. Chinese Science Bulletin, 2013, 58(13): 1204-1212.
    [2]
    WHITTAKER R H. Evolution and measurement of species diversity [J]. Taxon, 1972, 21:213-251.
    [2]
    ZHANG C Y, ZHAO X H, ZHAO Y Z. Community structure in different successional stages in north temperate forests of Changbai Mountains, China [J]. Chinese Journal of Plant Ecology,2009,33(6):1090-1100.
    [3]
    LI W H, DENG K M, LI F. Study on biomass and primary production of the main ecosystems in Changbai Mountain [J]. Forest Ecosystem Research, 1981(2):34-50.
    [3]
    NEKOLA J C, WHITE P S. The distance decay of similarity in biogeography and ecology [J]. Journal of Biogeography, 1999, 26(4): 867-878.
    [4]
    CONDIT R, PITMAN N, LEIGH E G, Jr., et al. Beta-diversity in tropical forest trees [J]. Science, 2002, 295:666-669.
    [4]
    YANG J, LU M M, CAO M, et al. Phylogenetic and functional alpha and beta diversity in mid-mountain humid evergreen broad-leaved forest [J]. Chinese Science Bulletin, 2014, 59: 2349-2358.
    [5]
    TUOMISTO H, RUOKOLAINEN K, YLI-HALLA M. Dispersal, environment, and floristic variation of western Amazonian forests [J]. Science, 2003, 299:241-244.
    [6]
    TOBLER W R. A computer movie simulating urban growth in the Detroit region [J]. Economic Geography, 1970, 46:234-240.
    [7]
    LENNON J J, KOLEFF P, GREENWOOD J J D, et al. The geographical structure of British bird distributions: diversity, spatial turnover and scale [J]. Journal of Animal Ecology, 2001, 70(6):966-979.
    [8]
    QIAN H. Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks [J]. Journal of Systematics and Evolution, 2009, 47: 509-514.
    [9]
    LEIBOLD M A, MCPEEK M A. Coexistence of the niche and neutral perspectives in community ecology [J]. Ecology, 2006, 87(6): 1399-1410.
    [10]
    HUBBELL S P. The unified neutral theory of biodiversity and biogeography [M]. Princeton: Princeton University Press, 2001.
    [11]
    VALENCIA R, FOSTER R B, VILLA G, et al. Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador [J].Journal of Ecology, 2004, 92(2):214-229.
    [12]
    SOININEN J, MCDONALD R, HILLEBRAND H. The distance decay of similarity in ecological communities[J]. Ecography, 2007, 30(1): 3-12.
    [13]
    LEGENDRE P, MI X C, REN H B, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China [J]. Ecology, 2009,90(3): 663-674.
    [14]
    饶米德,冯刚,张金龙,等.生境过滤和扩散限制作用对古田山森林物种和系统发育β多样性的影响[J]. 科学通报,2013, 58(13): 1204-1212.
    [15]
    MYERS J A, CHASE J M, JIMENEZ I, et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly [J]. Ecology Letters, 2013,16(2): 151-157.
    [16]
    WEBB C O, ACKERLY D D, MCPEEK M A, et al. Phylogenies and community ecology [J]. Annual Review of Ecology and Systematics, 2002, 33: 475-505.
    [17]
    SWENSON N G. The assembly of tropical tree communities: the advances and shortcomings of phylogenetic and functional trait analyses [J].Ecography, 2013, 36: 264-276.
    [18]
    QIAN H, RICKLEFS R E. Large-scale processes and the Asian bias in species diversity of temperate plants [J]. Nature, 2000, 407: 180-182.
    [19]
    FUKAMI T, BEZEMER T M, MORTIMER S R, et al. Species divergence and trait convergence in experimental plant community assembly [J]. Ecology Letters, 2005, 8: 1283-1290.
    [20]
    GRAHAM C H, FINE P V A F. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time [J]. Ecology Letters, 2008, 11(12): 1265-1277.
    [21]
    YANG J, SWENSON N G, ZHANG G C, et al. Local-scale partitioning of functional and phylogenetic beta diversity in a tropical tree assemblage [J]. Scientific Reports, 2015, 5: 12731. DOI: 10.1038/srep12731.
    [22]
    MORI A S, FUJII S, KITAGAWA R, et al. Null model approaches to evaluating the relative role of different assembly processes in shaping ecological communities [J]. Oecologia, 2015, 178(1): 261-273.
    [23]
    SWENSON N G, ANGLADA-CORDERO P, BARONE J A. Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient [J]. Proceedings of the Royal Society B: Biological Sciences, 2011, 278(1707): 877-884.
    [24]
    SIEFERT A, RAVENSCROFT C, WEISER M D, et al. Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees [J]. Global Ecology and Biogeography, 2013, 22(6): 682-691.
    [25]
    张春雨, 赵秀海, 赵亚洲. 长白山温带森林不同演替阶段群落结构特征[J]. 植物生态学报, 2009, 33(6): 1090-1100.
    [26]
    李文华, 邓坤枚, 李飞. 长白山主要生态系统生物量生产量的研究[J]. 森林生态系统研究, 1981(2):34-50.
    [27]
    WEBB C O, DONOGHUE M J. Phylomatic: tree assembly for applied phylogenetics [J]. Molecular Ecology Notes, 2005, 5:181-183.
    [28]
    WEBB C O, ACKERLY D D, KEMBEL S W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution [J].Bioinformatics, 2008, 24: 2098-2100.
    [29]
    WIKSTROM N, SAVOLAINEN V, CHASE M W. Evolution of the angiosperms: calibrating the family tree [J]. Proceedings of the Royal Society B: Biological Sciences, 2001, 268(1482): 2211-2220.
    [30]
    CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide [J]. Australian Journal of Botany, 2003, 51(4): 335-380.
    [31]
    MOLES A T, WARTON D I, WARMAN L, et al. Global patterns in plant height [J]. Journal of Ecology, 2009, 97(5): 923-932.
    [32]
    WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004, 428: 821-827.
    [33]
    PETCHEY O L, GASTON K J. Functional diversity (FD), species richness and community composition [J]. Ecology Letters, 2002, 5: 402-411.
    [34]
    BLOMBERG S P, GARLAND T, Jr., IVES A R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile [J]. Evolution, 2003, 57(4): 717-745.
    [35]
    BRYANT J A, LAMANNA C, MORLON H, et al. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity [J].Proceedings of the National Academy of Sciences, 2008, 105:11505-11511.
    [36]
    GOTELLI N, GRAVES G.Neutral models in ecology [M]. Washington: Smithsonian Institution Press, 1996.
    [37]
    KEMBEL S W, COWAN P D, HELMUS M R, et al. Picante: R tools for integrating phylogenies and ecology [J]. Bioinformatics, 2010, 26(11):1463-1464.
    [38]
    STEINITZ O, HELLER J, TSOAR A, et al. Environment, dispersal and patterns of species similarity [J].Journal of Biogeography, 2006, 33(6): 1044-1054.
    [39]
    BIN Y, WANG Z G, WANG Z M, et al. The effects of dispersal limitation and topographic heterogeneity on beta diversity and phylobetadiversity in a subtropical forest [J]. Plant Ecology, 2010, 209(2): 237-256.
    [40]
    QIAO X, LI Q, JIANG Q, et al. Beta diversity determinants in Badagongshan, a subtropical forest in central China [J]. Scientific Reports, 2015, 5: 17043. DOI: 10.1038/srep17043.
    [41]
    MAYFIELD M M, LEVINE J M. Opposing effects of competitive exclusion on the phylogenetic structure of communities [J]. Ecology Letters, 2010, 13(9): 1085-1093.
    [42]
    HILLERISLAMBERS J, ADLER P B, HARPOLE W S, et al. Rethinking community assembly through the lens of coexistence theory [J]. Annual Review of Ecology Evolution and Systematics, 2012, 43: 227-248.
    [43]
    SWENSON N G, ERICKSON D L, MI X C, et al. Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities [J]. Ecology, 2012, 93(8): S112-S125.
    [44]
    YUAN Z Q, GAZOL A, WANG X G, et al. Scale specific determinants of tree diversity in an old growth temperate forest in China [J]. Basic and Applied Ecology, 2011, 12(6):488-495.
    [45]
    WANG X G, WIEGAND T, WOLF A, et al. Spatial patterns of tree species richness in two temperate forests [J]. Journal of Ecology, 2011, 99(6):1382-1393.
    [46]
    杨洁, 卢孟孟, 曹敏, 等.中山湿性常绿阔叶林系统发育和功能性状的α及β多样性[J]. 科学通报,2014, 59: 2349-2358.
    [47]
    GONZALEZ-CARO S, UMANA M N, ALVAREZ E, et al. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America [J]. Journal of Plant Ecology, 2014, 7(2): 145-153.
  • Cited by

    Periodical cited type(11)

    1. 李捷,孙文涛,庞晓攀,徐雪婷,杨欢,郭正刚. 高原鼠兔干扰对高寒草甸植物物种和功能性状beta多样性的影响. 生态学报. 2024(07): 2993-3003 .
    2. 尹才佳,马龙,邹书珍,康迪. 地震滑坡体恢复后植物β多样性格局及其环境响应. 西北植物学报. 2023(02): 316-325 .
    3. 陈瑶,余雯静,陈珑,郭汝凤,吴承祯,李键. 基于同质园的不同品种茶树叶性状变异及经济谱. 应用与环境生物学报. 2023(03): 720-729 .
    4. Jianghao ZHAO,Yingying LIU,Xiaoguo BAI,Anping LI,Yanjiao LI,Shiping CHENG,Guang QI. Phylogenetic Structure of Low Altitude Forest Communities in Baotianman Mountain. Asian Agricultural Research. 2022(06): 31-36 .
    5. 王健铭,曲梦君,王寅,冯益明,吴波,卢琦,何念鹏,李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素. 生物多样性. 2022(06): 62-75 .
    6. 杨欢,王寅,王健铭,夏延国,李景文,贾晓红,吴波. 环境过滤和扩散限制对库姆塔格沙漠南缘植物群落β-多样性的影响. 中国沙漠. 2021(03): 147-154 .
    7. 高辉,刘丽娟,方江平. 西藏色季拉山森林群落沿海拔梯度变化格局. 广西师范大学学报(自然科学版). 2020(06): 122-130 .
    8. 周昌艳,王彬,邓云,乌俊杰,曹敏,林露湘. 林冠结构是局域尺度木本植物功能性状beta多样性形成的重要驱动力. 生物多样性. 2020(12): 1546-1557 .
    9. 庞志强,姜丽莎,缪祥蓉,亓峥,卢炜丽. 昆明市主要园林植物叶性状及叶经济谱研究. 西南林业大学学报(自然科学). 2019(04): 53-60 .
    10. 刘丽杰,尹航,金慧,赵莹,贾翔. 基于生态文明视角下长白山生物多样性保护研究探索. 吉林农业. 2018(04): 97 .
    11. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(14)

Catalog

    Article views (2039) PDF downloads (81) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return