• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHAO Wen-xia, ZOU Bin, ZHENG Jing-ming, LUO Jiu-fu. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. DOI: 10.13332/j.1000-1522.20160087
Citation: ZHAO Wen-xia, ZOU Bin, ZHENG Jing-ming, LUO Jiu-fu. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. DOI: 10.13332/j.1000-1522.20160087

Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest

More Information
  • Received Date: March 16, 2016
  • Revised Date: March 16, 2016
  • Published Date: June 29, 2016
  • In this paper we try to explain the relationships between the functional traits of different plant organs based on three hypotheses, i.e., the structural similarity hypothesis, functional similarity hypothesis and above and below-ground coordination hypothesis. We selected sixteen main tree species in the evergreen broad-leaved forest in Dagangshan, Jiangxi Province. Fifteen functional traits of these species were measured, including specific leaf area, specific root length, tissue density, carbon content etc., which could be classified into structural trait and chemical trait categories. Multiple t test and Pearson correlation test were used to analyze the correlations between functional traits of root, stem and leaf. For structural traits, there was no significant correlations between specific leaf area and specific root length. Tissue density differed significantly among the three organs and the correlation between stem and root tissue density was stronger than that between other organs. For chemical traits, the carbon contents showed little difference among the three organs and their pairwise correlations were extremely strong. The nitrogen content was higher in leaf, medium in twig and lower in fine root, and the correlations between leaf and root nitrogen contents were significant. Besides, twig phosphorous content was the highest, and the phosphorus contents of the three organs were positively related. Our results on the relationships of structural traits support the structural similarity hypothesis while the relationships of the nitrogen content support the functional similarity hypothesis. Meanwhile, the above and below-ground coordination hypothesis is supported by our results on carbon and phosphorous content. In conclusion, the functional traits of leaf, stem and root are coupled and may reflect the ecological strategies of plants to adapt to the environment.
  • [1]
    HE J S, HAN X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems [J]. Journal of Plant Ecology, 2010, 34(1): 2-6.
    [1]
    KOZLOWSKI T T, PALLARDY S G. Physiology of woody plants[M]. San Diego: Academic Press, 1997.
    [2]
    JACKSON R B, POCKMAN W T, HOFFMANN W A, et al. Structure and function of root systems[C]//PUGNAIRE F I, VALLADARES F. Plant functional ecology. Boca Raton: CRC Press, 2007.
    [2]
    LIU X J, MA K P. Plant functional traits-concepts,applicationsand future directions [J]. Science China Life Sciences, 2015, 45(4): 325-339.
    [3]
    WANG B, LI H J, GUO Q S,et al. Research for forest biodiversity in Dagangshan Mountains of Jiangxi Province [M]. Beijing: China Forestry Publishing House, 2005.
    [3]
    ACKERLY D D, DUDLEY S A, SULTAN S E, et al. The evolution of plant ecophysiological traits: recent advances and future directions [J]. BioScience, 2000, 50(11): 979-995.
    [4]
    WESTOBY M, FALSTER D S, MOLES A T, et al. Plant ecological strategies: some leading dimensions ofvariation between species[J].Annual Review of Ecology andSystematics, 2002, 33(1): 125-159.
    [4]
    WANG Y, LIU Y Q, YANG Q P, et al. A study on the community characteristics of evergreen broad-leaved forest in Dagangshan Mountains of Jiangxi Province [J].Acta Agriculturae Universitatis Jiangxiensis, 2009, 31(6): 1055-1063.
    [5]
    SHI Y, WEN Z M, GONG S H. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River basin, Shaanxi Province, China [J]. Acta Ecologica Sinica, 2011, 31(22): 6805-6814.
    [5]
    WRIGHT I J, REICH P B, WESTOB Y M, et al. The world-wide leaf economics spectrum [J].Nature, 2004, 428: 821-827.
    [6]
    ZHOU P, GENG Y, MA W H, et al. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China [J]. Journal of Plant Ecology, 2010, 34(1): 7-16.
    [6]
    HACKE U G, SPERRY J S, POCKMAN W T, et al. Trends inwood density and structure are linked to prevent of xylemimplosion by negative pressure [J]. Oecologia, 2001, 126(4): 457-461.
    [7]
    CAI F, ZOU B, ZHENG J M, et al. Fine root morphology and carbon and nitrogen contents of 11 tree species in subtropical evergreen forest [J]. Journal of Northwest A&F University (Nat. Sci. ED.), 2014, 42(5): 45-54.
    [7]
    STERCK F J, VAN GELDER H A, POORTER L. Mechanicalbranch constraints contribute to life-history variation acrosstree species in a Bolivian forest [J]. Journal of Ecology, 2006, 94(6): 1192-1200.
    [8]
    KING D A, DAVIES S J, NURSUPARDI M N, et al. Treegrowth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia [J].Functional Ecology, 2005, 19(3): 445-453.
    [8]
    ZOU B, CAI F, ZHENG J M, et al. Biomassvertical distribution of fine root and its traits of four tree species in subtropical natural forest [J]. Journal of Northeast Forestry University, 2015, 43(3): 18-22.
    [9]
    ZHOU Z Q, PENG Y L, SUN M L,et al. Effects of nitrogen levels on photosynthetic and fluorescence characteristics in seedlings of endangered plant Phellodendron amurense [J]. Journal of Beijing Forestry University, 2015, 37(12): 17-23.
    [9]
    KING D A, DAVIES S J, NURSUPARDI M N, et al. The role ofwoody density and stem support costs in the growth andmortality of tropical trees [J]. Journal of Ecology, 2006, 94(3): 670-680.
    [10]
    GUO W, GONG H, HAN S J, et al. Effects of nitrogen-water interaction on fine root morphology and production in a mixed Pinus koraiensis forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 29-35.
    [10]
    WITHINGTON J M, REICH P B, OLEKSYN J, et al. Comparison of structure and life span in roots and leavesamong temperate trees [J]. Ecological Monographs, 2006, 76(3):381-397.
    [11]
    REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proc Natl Acad Sci USA, 2004, 101(30): 11001-11006.
    [11]
    XU B, CHENG Y X, GAN H J, et al. Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China [J]. Journal of Plant Ecology, 2010, 34(1): 29-38.
    [12]
    FENG Q H, SHI Z M, DONG L L, et al. Relationships among functional traits of Quercus species and their response to meteorological factors in the temperate zone of the North-South Transect of Eastern China [J]. Journal of Plant Ecology, 2010, 34(6): 619-627.
    [12]
    贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论 [J]. 植物生态学报, 2010, 34(1): 2-6.
    [13]
    SHIPLEY B, VILE D, GARNIER E. From plant traits to plant communities:a statistical mechanistic approach to biodiversity [J]. Science, 2006, 314: 812-814.
    [14]
    OSNAS J L D, LICHSTEIN J W, REICH P B, et al. Global leaftrait relationships: mass, area, and the leaf economics spectrum [J]. Science, 2013, 340:741-744.
    [15]
    CHAVE J, COOMES D, JANSEN S, et al. Towards a worldwide wood economics spectrum [J]. Ecology Letters, 2009,12(4): 351-366.
    [16]
    FRESCHET G, AERT R, CORNELISSEN H C. A plant economics spectrum of litter decomposability [J]. Functional Ecology, 2013, 26(1): 56-65.
    [17]
    MOMMER L, WEEMSTRA M. The role of roots in the resource economics spectrum [J].New Phytologist, 2012, 195(4): 725-727.
    [18]
    REICH P B. The world-wide “fast-slow” plant economics spectrum: a trait manifesto [J]. Journal of Ecology, 2014, 102(2): 275-301.
    [19]
    CHAPIN F S. The mineral nutrition of wild plants [J]. Annual Review of Ecology and Systematics, 1980, 11(6): 233-260.
    [20]
    TYREE M T, EWERS F W. The hydraulic architecture of trees andother woody plants [J].New Phytologist, 1991, 119(34): 345-360.
    [21]
    PRATTRB A L, EWERS F W, et al. Relationshipsamong xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral [J]. New Phytologist,2007, 174(4): 787-798.
    [22]
    刘晓娟, 马克平. 植物功能性状研究进展 [J]. 中国科学(生命科学), 2015, 45(4): 325-339.
    [23]
    FORTUNEL C, PAUL VA F, BARALOTO C. Leaf, stem and root tissue strategies across 758 Neotropical tree species [J].Functional Ecology, 2012, 269(5):1153-1161.
    [24]
    王兵, 李海静, 郭泉水, 等. 江西大岗山森林生物多样性研究 [M]. 北京:中国林业出版社, 2005.
    [25]
    王燕, 刘苑秋, 杨清培, 等. 江西大岗山常绿阔叶林群落特征研究 [J]. 江西农业大学学报, 2009, 31(6): 1055-1063.
    [26]
    PEREZ-HARGUINDEGUY N, DIAZ S, GAMIER E, et al. New handbook for standardized measurement of plant functional traits worldwide [J].Australian Journal of Botany, 2013, 61(3): 167-234.
    [27]
    R Core Team. R: a language and environment for statistical computing[CP/OL]. R Foundation for Statistical Computing, Vienna, Austria. (2015-08-14)[2016-03-17]. http:∥www.R_project.org/.
    [28]
    CRAINE J M, FROEHLE J, TILMAN D G. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients [J].Oikos, 2001, 93(2): 274-285.
    [29]
    ZHENG J M, MARTINEZ-CABRERA H I. Wood anatomical correlates with the theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma [J]. Annals of Botany, 2013, 112(5): 927-935.
    [30]
    施宇, 温仲明, 龚时慧. 黄土丘陵区植物叶片与细根功能性状关系及其变化 [J]. 生态学报, 2011, 31(22): 6805-6814.
    [31]
    TJOELKER M G, CRAIN J M, WEDIN D, et al. Linking leaf and root trait syndromes among 39 grassland and savannah species [J]. New Phytologist, 2005,167(2): 493-508.
    [32]
    周鹏, 耿燕, 马文红, 等. 温带草地主要优势植物不同器官间功能性状的关联 [J]. 植物生态学报, 2010, 34(1): 7-16.
    [33]
    BARALOTO C, PAINE C E T, POORTER L, et al. Decoupled leaf and stem economics in rain forest trees [J]. Ecology Letters, 2010, 13(11): 1338-1347.
    [34]
    蔡飞, 邹斌, 郑景明, 等. 亚热带常绿阔叶林11个树种的细根形态及碳氮含量研究 [J]. 西北农林科技大学学报(自然科学版), 2014, 42(5): 45-54.
    [35]
    邹斌, 蔡飞, 郑景明, 等. 亚热带天然林4种树木细根生物量垂直分布和其他功能性状 [J]. 东北林业大学学报, 2015, 43(3): 18-22.
    [36]
    COMAS L H, EISSENSTAT D M. Linking fine root traits tomaximum potential growth rate among 11 mature temperate tree species [J]. Functional Ecology, 2004, 18(3): 388-397.
    [37]
    AEKERLY D D, DONOGHUE M J. Leaf size, sapling allometry, and Corner's rules: phylogeny and correlated evolution in maples ( Acer ) [J]. American Naturalist, 1998, 152(6): 767-791.
    [38]
    周志强, 彭英丽, 孙铭隆, 等. 不同氮素水平对濒危植物黄檗幼苗光合荧光特性的影响[J]. 北京林业大学学报, 2015, 37(12): 17-23.
    [39]
    郭伟, 宫浩, 韩士杰, 等. 氮、水交互对长白山阔叶红松林细根形态及生产量的影响[J]. 北京林业大学学报, 2016, 38(4): 29-35.
    [40]
    徐冰, 程雨曦, 甘慧洁, 等. 内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联 [J]. 植物生态学报, 2010, 34(1): 29-38.
    [41]
    KERKHOOF A J, FAGAN W F, ELSER J J, et al. Phylogenetic and growth formvariation in the scaling of nitrogen and phosphorus in the seed plants [J]. The American Naturalist, 2006, 168(4): 103-122.
    [42]
    冯秋红, 史作民, 董莉莉, 等. 南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应[J]. 植物生态学报, 2010, 34(6):619-627.
  • Cited by

    Periodical cited type(27)

    1. 佟富春,吴智华,林瑞雪,吴晓君,邓惠方,黄子峻,李仁杰,栾军伟. 毛竹扩张对南亚热带常绿阔叶林土壤跳虫群落特征的影响. 中南林业调查规划. 2024(01): 51-57+70 .
    2. 应益山,凡莉莉,陈双林,郭子武,胡瑞财. 苦竹扩张茶园过程中茶树叶片性状及其异速生长关系变化特征. 竹子学报. 2024(02): 50-57 .
    3. 汪忠华,陈双林,胡瑞财,郭子武,江秀琴,凡莉莉. 苦竹向茶园扩张后不同年龄立竹叶片的功能性状变化特征研究. 西南林业大学学报(自然科学). 2024(05): 25-34 .
    4. 陈禹锦,于芬,国春策,杨光耀,张文根. 基于MaxEnt生态位模型的毛竹全球潜在适生区预测与分析. 世界竹藤通讯. 2024(05): 47-58 .
    5. 董亚文,谢燕燕,陈双林,郭子武,张景润,汪舍平. 林下植被演替过程中毛竹枝叶形态质量和抽枝展叶效率变化特征. 植物科学学报. 2023(04): 437-446 .
    6. 周德中,周小枫,王绍剑,刘骏,王涓,李怡. 基于文献计量学的毛竹扩张研究现状可视化分析. 生物灾害科学. 2023(04): 519-528 .
    7. 蔡世锋. 木荷与杉木混交对林木生长及叶功能性状的影响. 福建林业科技. 2023(04): 55-61 .
    8. 佟富春,吴智华,林瑞雪,吴晓君,邓惠方,袁千允,栾军伟,肖以华. 毛竹扩张对土壤甲螨群落结构的影响. 东北林业大学学报. 2022(02): 59-64 .
    9. 阮宇,胡景涛,肖国生,李俊清,任凭. 中山杉功能性状适应三峡库区消落带研究. 生态学报. 2022(07): 2921-2930 .
    10. 夏恩龙,农珺清,魏松坡,刘希珍,刘广路. 毛竹向阔叶林扩展过程中土壤养分变化特征. 生态环境学报. 2022(06): 1110-1117 .
    11. 程明圣,邹娜. 毛竹扩张对森林生态的影响及其管控研究进展. 江汉大学学报(自然科学版). 2021(03): 49-55 .
    12. 陈禹锦,罗喻才,于芬,杨光耀,张文根. 气候变化情景下毛竹潜在分布及动态预测. 世界竹藤通讯. 2021(03): 5-14 .
    13. 何玉友,陈双林,郭子武,张玮,汪舍平. 不同弃管年限毛竹林立竹叶片功能性状的变化特征. 福建农林大学学报(自然科学版). 2021(05): 641-648 .
    14. 黄彪,刘广路,范少辉,刘希珍,冯云,农珺清,申景昕. 毛竹向阔叶林扩展过程细根可塑性变化. 中南林业科技大学学报. 2021(10): 11-19 .
    15. 王敬哲,陈志强,陈志彪,潘宗涛. 南方红壤侵蚀区不同植被恢复年限下芒萁叶功能性状对土壤因子的响应. 生态学报. 2020(03): 900-909 .
    16. 郭雯,张建,漆良华,商泽安,王锐,杨畅. 毛竹及其变种叶功能性状与影响因素. 森林与环境学报. 2020(03): 260-268 .
    17. 张秀芳,穆振北,林美娇,江淼华,巩嘉欣,游巍斌. 琅岐岛4种优势植物叶功能性状及其影响因子. 应用与环境生物学报. 2020(03): 667-673 .
    18. 池鑫晨,宋超,朱向涛,王楠,王晓雨,白尚斌. 毛竹入侵常绿阔叶林对土壤活性有机碳氮的动态影响. 生态学杂志. 2020(07): 2263-2272 .
    19. 钟雅琪,钟全林,李宝银,余华,徐朝斌,程栋梁,乐新贵,郑文婷. 毛竹扩张对亚热带常绿阔叶林主要树种叶结构型性状的影响. 生态学报. 2020(14): 5018-5028 .
    20. 张秀梅,许建新,何新杰,张朝铖,沈彦会,张竞元. 高温胁迫对洋竹草生长及部分生理指标的影响. 江西农业学报. 2019(06): 40-44 .
    21. 童冉,周本智,姜丽娜,曹永慧,葛晓改,杨振亚. 毛竹入侵对森林植物和土壤的影响研究进展. 生态学报. 2019(11): 3808-3815 .
    22. 范少辉,申景昕,刘广路,冯云,刘希珍,蔡春菊. 毛竹向杉木林扩展对土壤养分含量及计量比的影响. 西北植物学报. 2019(08): 1455-1462 .
    23. 喻阳华,钟欣平,程雯. 黔西北地区优势树种叶片功能性状与经济谱分析. 森林与环境学报. 2018(02): 196-201 .
    24. 郭雯,徐瑞晶,漆良华,胡璇,丁霞,程昌锦,张建,雷刚. 竹类植物光合特性与叶片功能性状研究. 世界林业研究. 2018(04): 29-35 .
    25. 刘广路,范少辉,唐晓鹿,刘希珍. 毛竹向杉木林扩展过程中叶功能性状的适应策略. 林业科学. 2017(08): 17-25 .
    26. 刘广路,范少辉,蔡春菊,刘希珍. 毛竹向撂荒地扩展过程中叶功能性状变化. 南京林业大学学报(自然科学版). 2017(02): 41-46 .
    27. 刘广路,刘希珍,李雁冰,罗天磊,蔡春菊,范少辉. 毛竹向撂荒地扩展过程中细根性状变化特征. 热带作物学报. 2017(07): 1204-1209 .

    Other cited types(14)

Catalog

    Article views (2445) PDF downloads (65) Cited by(41)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return