• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098
Citation: GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098

Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.

More Information
  • Received Date: March 21, 2016
  • Published Date: October 28, 2016
  • In order to study the influence of brown-rot decay on main properties of hardwood, Populus cathayana sapwood specimens (20 mm×20 mm×300 mm) were made and brown-rot decay was incubated on the specimens in laboratory with brown-rot fungus Gloeophyllum trabeum for 12 weeks. The mechanical properties, microstructure and chemical compositions of both healthy wood and decayed wood were investigated once a week. And then changes of all indexes during decay processing and the correlation between mechanical properties and chemical compositions were contrastively analyzed. The research results showed that more and more hyphae were found in wood cell lumina under scanning electron microscopy (SEM) with decay degree increasing. Pit membrane and the cell wall on the edge of pit were successively broken up at a wood weight loss of 10% and 16% respectively. Finally, the cell wall was ulcerated seriously while the wood weight loss increased to 24%. Both degradation time and weight loss had extremely significant influence on wood mechanical properties (P0.01). The loss of impact bending strength (IBS) and modulus of rupture (MOR) increased in forms of logarithmic function with decay degree changing (R2 = 0.922**,0.830**), while the loss of modulus of elasticity (MOE) and the compressive strength parallel to grain (CSⅡ) increased slowly in linear trends (R2 = 0.991**,0.986**). Whether the response speed to decay or the influenced degree by decay, the ranking of four mechanical properties were IBSMORMOECSⅡ. Holocellulose, hemicellulose and extractions of specimens varied significantly at different decay degrees (P0.01), but cellulose and lignin had no significant variance (P0.05). During the decay processing, hemicellulose was first and mainly degraded by brown-rot fungus. The prominent degradation of cellulose began when the weight loss was about 20%. A strong relationship between the loss of wood IBS and the degradation of hemicellulose was found. The variation of MOR was dependent on holocellulose content. And the linear decreasing trends of MOE and CSⅡ were determined by cellulose’s slow degradation. In conclusion, during the brown-rot decay processing, the degradation of chemical compositions and the structural failure of wood cell wall at the micro level fundamentally resulted in the decrease of macroscopical mechanical properties.
  • [1]
    YANG Z, JIANG Z H, FEI B H. Review of literature on incipient decay in wood[J]. Scientia Silvae Sinicae, 2006,42(3):99-103.
    [1]
    杨忠, 江泽慧, 费本华. 木材初期腐朽研究综述[J]. 林业科学, 2006,42(3):99-103.
    [2]
    李坚. 木材科学[M]. 北京:高等教育出版社, 2002:434-439.
    [2]
    LI J. Wood science[M]. Beijing: Higher Education Press, 2002:434-439.
    [3]
    WILCOX W W. Review of literature on the effects of early stages of decay on wood strength[J]. Wood and Fiber, 1978,9(4):252-257.
    [3]
    JIN Z W, TAI D S, YOU J X. Decay resistance of natural durable species and the changes in amounts of major components during decay of wood by Coriolus versicolor and Gloeophyllum trabeum[J]. Scientia Silvae Sinicae, 1989,25(5):447-452.
    [4]
    WINANDY J E, MORRELL J J. Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood[J]. Wood and Fiber Science, 1993,25(3):278-288.
    [4]
    CHEN M Z, WANG C H, YE H L, et al. A scanning electron microscopy study on the rotting progression to poplar wood by three strains of white-rot fungus Coriolus versicolor[J]. Journal of Cellulose Science and Technology, 1995,3(1):28-36.
    [5]
    CURLING S F, CLAUSEN C A, WINANDY J E. Relationships between mechanical properties, weight loss, and chemical composition of wood during incipient brown-rot decay[J]. Forest Products Journal, 2002,52(7-8):34-39.
    [5]
    CHI Y J. Study on the wood degrading ability of 64 wood-rotting fungi in the northeast forestry reserves of China[J]. Scientia Silvae Sinicae, 2001,37(5):107-112.
    [6]
    BOUSLIMI B, KOUBAA A, BERGERON Y. Effects of biodegradation by brown-rot decay on selected wood properties in eastern white cedar (Thuja occidentalis L.)[J]. International Biodeterioration Biodegradation, 2014,87:87-98.
    [6]
    LIU X, WANG Q Y, YANG C P. Comparison of the decaying ability to white birch wood among four wood rot fungi[J]. Scientia Silvae Sinicae, 2009,45(8):179-183.
    [7]
    LI G Y, REN H Q, QIN T F, et al. Changes of main wood chemical components during brown-rot decay by Wolfiporia cocos[J]. Forest Research, 2009,22(4):592-596.
    [7]
    BARI E, TAGHIYARI H R, MOHEBBY B, et al. Mechanical properties and chemical composition of beech wood exposed for 30 and 120 days to white-rot fungi[J]. Holzforschung, 2015,69(5):587-593.
    [8]
    金重为, 邰瓞生, 尤纪雪. 天然耐腐木材的抗腐力及其在腐朽过程中化学成分的变化[J]. 林业科学, 1989,25(5):447-452.
    [8]
    REN H L, LU F, ZHANG L S, et al. Main chemical components changes of Moso bamboo during decay[J]. China Forest Products Industry, 2013,40(1):52-54.
    [9]
    陈敏忠, 王传槐, 叶汉玲, 等. 不同云芝菌株腐朽杨木过程的扫描电镜研究[J]. 纤维素科学与技术, 1995,3(1):28-36.
    [9]
    LIU W B. Study on relationship of molder condition between variations of chemical ingredients and bending strength of ancient wood structure in the Imperial Palace[D]. Beijing: Beijing Forestry University, 2006.
    [10]
    池玉杰. 东北林区64种木材腐朽菌木材分解能力的研究[J]. 林业科学, 2001,37(5):107-112.
    [10]
    CHENG X B. The influence of incipient brown rot on the properties of Chinese fir at macroscopic and tissue level[D]. Beijing: Chinese Academy of Forestry, 2011.
    [11]
    JIN Z W, YOU J X, HE W L, et al. Research on degradation and protection of poplar wood[J]. Journal of Nanjing Forestry University, 1988,12(4):66-73.
    [11]
    刘欣, 王秋玉, 杨传平. 4种木材腐朽菌对白桦木材降解能力的比较[J]. 林业科学, 2009,45(8):179-183.
    [12]
    ZHAO G H, SONG Z. The summary of the research about Trametes trogh Berk. on the poplar wood[J]. Journal of Nanjing Forestry University, 1991,15(1):85-88.
    [12]
    李改云, 任海青, 秦特夫, 等. 茯苓褐腐过程中木材化学成分的变化[J]. 林业科学研究, 2009,22(4):592-596.
    [13]
    AQSIQ, SAC. Method of sample logs sawing and test specimens selection for physical and mechanical tests of wood: GB/T 1929—2009[S]. Beijing: Standards Press of China, 2009.
    [13]
    任红玲, 陆方, 张禄晟, 等. 腐朽过程中毛竹主要化学成分的变化[J]. 林产工业, 2013,40(1):52-54.
    [14]
    刘文斌. 故宫古建筑木构件化学成分及抗弯强度的变化与腐朽的相关性研究[D]. 北京:北京林业大学, 2006.
    [14]
    AQSIQ, SAC. Durability of wood-Part 1: Method for laboratory test of natural decay resistance: GB/T 13942.1—2009[S]. Beijing: Standards Press of China, 2009.
    [15]
    程献宝. 初期褐腐对杉木宏观和组织力学性能的影响[D]. 北京:中国林业科学研究院, 2011.
    [15]
    AQSIQ, SAC.Method for determination of the modulus of elasticity in static bending of wood: GB/T 1936.2—2009[S]. Beijing: Standards Press of China, 2009.
    [16]
    金重为, 尤纪雪, 何文龙, 等. 杨木腐朽及其防止方法的研究[J]. 南京林业大学学报, 1988,12(4):66-73.
    [16]
    AQSIQ, SAC.Method of testing in toughness of wood: GB/T 1940—2009[S]. Beijing: Standards Press of China, 2009.
    [17]
    赵桂华, 宋桢. 杨木上毛栓菌的研究[J]. 南京林业大学学报, 1991,15(1):85-88.
    [17]
    AQSIQ, SAC.Method of testing in compressive strength parallel to grain of wood: GB/T 1935—2009[S]. Beijing: Standards Press of China, 2009.
    [18]
    AQSIQ, SAC.Determination of moisture content in fibrous raw material: GB/T 2677.2—2011 [S]. Beijing: Standards Press of China, 2011.
    [18]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 木材物理力学试材锯解及试样截取方法: GB/T 1929—2009[S].北京:中国标准出版社,2009.
    [19]
    AQSIQ, SAC.Fibrous raw material: determination of holocellulose: GB/T 2677.10—1995 [S]. Beijing: Standards Press of China, 1995.
    [19]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 木材耐久性能第1部分:天然耐久性实验室试验方法: GB/T 13942.1—2009[S]. 北京:中国标准出版社,2009.
    [20]
    AQSIQ, SAC.Raw material and pulp: determination of acid-soluble lignin: GB/T 10337—2008 [S]. Beijing: Standards Press of China, 2008.
    [20]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 木材抗弯弹性模量测定方法: GB/T 1936.2—2009[S]. 北京:中国标准出版社,2009.
    [21]
    AQSIQ, SAC.Fibrous raw material: determination of acid-insoluble lignin: GB/T 2677.8—1994 [S]. Beijing: Standards Press of China, 1994.
    [21]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 木材冲击韧性试验方法: GB/T 1940—2009[S]. 北京:中国标准出版社,2009.
    [22]
    AQSIQ, SAC.Fibrous raw material: determination of onepercent sodium hydroxide solubility: GB/T 2677.5—1993 [S]. Beijing: Standards Press of China, 1993.
    [22]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 木材顺纹抗压强度试验方法: GB/T 1935—2009[S]. 北京:中国标准出版社,2009.
    [23]
    AQSIQ, SAC.Fibrous raw material: determination of solvent extractives: GB/T 2677.6—1994 [S]. Beijing: Standards Press of China, 1994.
    [23]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 造纸原料水分的测定: GB/T 2677.2—2011[S]. 北京:中国标准出版社,2011.
    [24]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 造纸原料综纤维素含量的测定: GB/T 2677.10—1995[S]. 北京:中国标准出版社,1995.
    [24]
    REN S X, JIANG G Q, QU H J. Plant fiberchemistry experiment[M]. Harbin: Northeast Forestry University Press, 2008:53-54.
    [25]
    LIANG S Q. Study on diagnosis and assessment technology of stress wave tomography in old and famous trees[D]. Beijing: Chinese Academy of Forestry, 2005.
    [25]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 造纸原料和纸浆酸溶木素的测定: GB/T 10337—2008[S]. 北京:中国标准出版社,2008.
    [26]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 造纸原料酸不溶木素含量的测定: GB/T 2677.8—1994[S]. 北京:中国标准出版社,1994.
    [27]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 造纸原料1%氢氧化钠抽出物含量的测定: GB/T 2677.5—1993[S]. 北京:中国标准出版社,1993.
    [28]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 造纸原料有机溶剂抽出物含量的测定: GB/T 2677.6—1994[S]. 北京:中国标准出版社,1994.
    [29]
    任世学, 姜贵全, 屈红军. 植物纤维化学实验教程[M]. 哈尔滨:东北林业大学出版社, 2008:53-54.
    [30]
    梁善庆. 古树名木应力波断层成像诊断与评价技术研究[D]. 北京:中国林业科学院, 2005.
    [31]
    GREEN F, HIGHLEY T L. Mechanism of brown-rot decay: paradigm or paradox[J]. International Biodeterioration Biodegradation, 1997,39(2-3):113-124.
  • Cited by

    Periodical cited type(18)

    1. 黄鑫,徐国祺,马耀辉. 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂. 北京林业大学学报. 2025(01): 116-125 . 本站查看
    2. 张景朋,邵闯,蒋明亮. 高效液相色谱法测定防腐材中嘧菌酯含量的方法研究. 木材科学与技术. 2025(01): 64-70 .
    3. 吴喆虹,王文志,罗玲卓,袁超峰,苏勇,朱万泽. 贡嘎山健康与腐朽峨眉冷杉径向生长分异及其气候响应. 生态学报. 2024(23): 10897-10905 .
    4. 储炜,徐明,许琪,李婷,崔兆彦. 加速腐朽环境下重组竹力学及耐腐性能研究. 建筑科学与工程学报. 2023(03): 30-39 .
    5. 宋丽琴,宋太泽,祝席文,程芳超,孙建平. 木材花斑真菌对木材的影响及应用研究进展. 应用与环境生物学报. 2022(03): 805-812 .
    6. 谢启芳,张保壮,张利朋,苗壮. 自然干裂木柱受力性能试验与退化模型研究. 建筑结构学报. 2022(12): 210-222 .
    7. 常旭东,金光泽. 地形和土壤因子对红松活立木腐朽的影响. 林业科学. 2022(11): 71-82 .
    8. 张景朋,蒋明亮,马星霞,张斌. 甲氧基丙烯酸酯类制剂的木材防腐性能研究. 北京林业大学学报. 2021(03): 131-137 . 本站查看
    9. 王玉娇,彭尧,曹金珍. 褐腐初期南方松木材微观形貌与化学成分分析. 北京林业大学学报. 2021(03): 138-144 . 本站查看
    10. 王湘茹,曾飞扬,吕嘉宇,乔宇欣,闫丽. 硅烷偶联剂对水杨酸/二氧化硅微胶囊改性杨木耐腐性的影响. 林产工业. 2021(05): 54-59 .
    11. 贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性. 林业科学. 2021(05): 165-175 .
    12. 赵艳,张泽宇,金宇乔,庞久寅,孙耀星. 木材表面仿制类玫瑰花超疏水结构研究. 林产工业. 2020(12): 32-34+39 .
    13. 赵博识,于志明,漆楚生,唐睿琳,张扬. 木材微生物变色与调控研究现状和展望. 林产工业. 2019(08): 1-4 .
    14. 郭宇,李超,李英洁,王哲,姚利宏. 木材细胞壁与木材力学性能及水分特性之间关系研究进展. 林产工业. 2019(08): 14-18 .
    15. 徐华东,狄亚楠,邢涛,徐群. 褐腐对白杨木材固碳量的影响规律及机理. 中南林业科技大学学报. 2019(11): 104-109 .
    16. 孙恒,冀晓东,赵红华,杨茂林,丛旭. 人工林刺槐木材物理力学性质研究. 北京林业大学学报. 2018(07): 104-112 . 本站查看
    17. 孙海燕,苏明垒,王玉荣. 木材细胞壁力学性能与细胞壁组分和构造的相关性研究. 林产工业. 2018(10): 22-27 .
    18. 陈继超,姜维娜,曹文静,周徐亮,周晓燕,徐莉. 杨木纤维/Si-B复合材料制备及其防腐性能研究. 南京林业大学学报(自然科学版). 2018(05): 206-210 .

    Other cited types(18)

Catalog

    Article views (3116) PDF downloads (36) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return