Citation: | ZHANG Wen-yi, JING Tian-zhong, YAN Shan-chun. Studies on prediction models of Dendrolimus superans occurrence area based on machine learning[J]. Journal of Beijing Forestry University, 2017, 39(1): 85-93. DOI: 10.13332/j.1000-1522.20160205 |
[1] |
王文龙.落叶松毛虫成虫种群数量监测技术研究[D].北京: 北京林业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10022-1014327487.htm
WANG W L. Technology of population dynamics monitoring of Dendrolimus superans (Butler) adult[D]. Beijing: Beijing Forestry University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10022-1014327487.htm
|
[2] |
邹莉, 张国权, 黄建伟.东北地区落叶松毛虫研究进展[J].安徽农业科学, 2014, 42(9): 2584-2587. doi: 10.3969/j.issn.0517-6611.2014.09.024
ZOU L, ZHANG G Q, HUANG J W. Research progress of Dendrolimus superansis in Northeast of China[J]. Journal of Anhui Agricutural Science, 2014, 42(9): 2584-2587. doi: 10.3969/j.issn.0517-6611.2014.09.024
|
[3] |
高宝嘉.关于森林有害生物可持续控制的思考[J].北京林业大学学报, 1999, 21(4): 112-115. doi: 10.3321/j.issn:1000-1522.1999.04.024
GAO B J. Consideration on sustainable control of forest pests[J]. Journal of Beijing Forestry University, 1999, 21(4): 112-115. doi: 10.3321/j.issn:1000-1522.1999.04.024
|
[4] |
薛贤清.在马尾松毛虫测报中应用逐步回归电算方法的研究[J].林业科学, 1984, 20(1): 42-49. http://www.linyekexue.net/CN/Y1984/V20/I1/42
XUE X Q. A study on the application of successive regression by computerization method to the forecast of Dendrolimus punctarus[J]. Scientia Silvae Sinicae, 1984, 20(1): 42-49. http://www.linyekexue.net/CN/Y1984/V20/I1/42
|
[5] |
梁其伟.四川省马尾松毛虫不同发生类型区的气候条件判别分析[J].数理统计与管理, 1990(1): 12-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002792926
LIANG Q W. Discriminant analysis on climatic conditions of different occurrence types of Dendrolimus punctatus in Sichuan Province[J]. Journal of Applied Statistics and Management, 1990(1): 12-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002792926
|
[6] |
李天生, 赵良彪, 卢崇飞, 等.用双重筛选逐步回归法对广西钦州县松毛虫发生进行分析与预测[J].林业科学, 1985, 21(3): 247-252. http://www.linyekexue.net/EN/abstract/abstract365.shtml
LI T S, ZHAO L B, LU C F, et al. Analysis and predicting of the pine caterpillar of Qinzhou County in Guangxi Autonomous Region by means of double selection stepwise regression method[J]. Scientia Silvae Sinicae, 1985, 21(3): 247-252. http://www.linyekexue.net/EN/abstract/abstract365.shtml
|
[7] |
吴敬, 洪伟, 翁少容, 等.马尾松毛虫消长预报的数量化模型[J].林业科学, 1983, 19(1): 39-45. http://www.linyekexue.net/CN/Y1983/V19/I1/39
WU J, HONG W, WENG S R, et al. The quantitative model for forecasting the growth and decline of Dendrolimus punctatus[J]. Scientia Silvae Sinicae, 1983, 19(1): 39-45. http://www.linyekexue.net/CN/Y1983/V19/I1/39
|
[8] |
叶文虎, 马小明, 李天生, 等.马尾松毛虫预测预报系统的研究[J].林业科学研究, 1990, 3(5): 427-433. http://www.lykxyj.com/ch/reader/view_abstract.aspx?file_no=19900502&flag=1
YE W H, MA X M, LI T S, et al. The population prediction of the pine caterpillar[J]. Forest Research, 1990, 3(5): 427-433. http://www.lykxyj.com/ch/reader/view_abstract.aspx?file_no=19900502&flag=1
|
[9] |
王淑芬, 张真, 陈亮.马尾松毛虫防治决策专家系统[J].林业科学, 1992, 28(1): 31-38. http://d.old.wanfangdata.com.cn/Conference/205444
WANG S F, ZHANG Z, CHEN L. An expert system for the control of Dendrolimus punctatus[J]. Scientia Silvae Sinicae, 1992, 28(1): 31-38. http://d.old.wanfangdata.com.cn/Conference/205444
|
[10] |
王霓虹, 缪天宇, 王阿川.基于WebGIS的森林病虫害预测预报专家系统的设计与应用[J].东北林业大学学报, 2008, 36(1): 79-80, 82. doi: 10.3969/j.issn.1000-5382.2008.01.032
WANG N H, LIAO T Y, WANG A C. Research and application of web-based forecast expert system for forest disease and insects[J]. Journal of Northeast Forestry University, 2008, 36(1): 79-80, 82. doi: 10.3969/j.issn.1000-5382.2008.01.032
|
[11] |
高倩.落叶松毛虫预测模型与模拟研究[D].保定: 河北农业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-11920-1012332275.htm
GAO Q. The study on prediction model and simulation of Dendrolimus superans[D]. Baoding: Agricultural University of Hebei, 2012. http://cdmd.cnki.com.cn/Article/CDMD-11920-1012332275.htm
|
[12] |
王霓虹, 李丹, 潘华.落叶松毛虫虫害防治预测咨询平台的研建[J].北京林业大学学报, 2009, 31(增刊2): 31-35. http://bjly.chinajournal.net.cn/editorc/WebPublication/paperDigest.aspx?paperID=BJLY2009S2006&isCnki=ck01
WANG N H, LI D, PAN H. Consultation platform of prevention and forecasting for Dendrolimus superans[J]. Journal of Beijing Forestry University, 2009, 31(Suppl. 2): 31-35. http://bjly.chinajournal.net.cn/editorc/WebPublication/paperDigest.aspx?paperID=BJLY2009S2006&isCnki=ck01
|
[13] |
戚莹.基于模糊神经网络的森林虫害预测预报的应用研究[D].哈尔滨: 东北林业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10225-1011146672.htm
QI Y. The research on forest pest forecast based on fuzzy neural network[D]. Harbin: Northeast Forestry University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10225-1011146672.htm
|
[14] |
闫友彪, 陈元琰.机器学习的主要策略综述[J].计算机应用研究, 2004, 21(7): 4-10. doi: 10.3969/j.issn.1001-3695.2004.07.002
YAN Y B, CHEN Y Y. A survey on machine learning and its main strategy[J]. Application Research of Computers, 2004, 21(7): 4-10. doi: 10.3969/j.issn.1001-3695.2004.07.002
|
[15] |
杨淑香, 赵慧颖, 包兴华.基于人工神经网络的落叶松毛虫发生量预测模型的研究[J].中国农学通报, 2014, 30(28): 72-75. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201428014
YANG S X, ZHAO H Y, BAO X H. A study on the forecast model of Dendrolimus superans butler occurrence based on artificial neural network[J]. Chinese Agricultural Science Bulletin, 2014, 30(28): 72-75. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201428014
|
[16] |
张景阳, 潘光友.多元线性回归与BP神经网络预测模型对比与运用研究[J].昆明理工大学学报(自然科学版), 2013, 38(6): 61-67. doi: 10.3969/j.issn.1007-855x.2013.06.010
ZHANG J Y, PAN G Y. Comparison and application of multiple regression and BP neural network prediction model[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2013, 38(6): 61-67. doi: 10.3969/j.issn.1007-855x.2013.06.010
|
[17] |
毛健, 赵红东, 姚婧婧.人工神经网络的发展及应用[J].电子设计工程, 2011, 19(24): 62-65. doi: 10.3969/j.issn.1674-6236.2011.24.022
MAO J, ZHAO H D, YAO J J. Application and prospect of artificial neural network[J]. Electronic Design Engineering, 2011, 19(24): 62-65. doi: 10.3969/j.issn.1674-6236.2011.24.022
|
[18] |
HOPFIELD J J. Artificial neural networks[J]. IEEE Circuit & Devices Magazine, 1988, 4(5): 3-10. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201509047
|
[19] |
YEGNANARAYANA B. Artificial neural networks[M]. New Delhi: PHI Learning Pvt. Ltd., 2009.
|
[20] |
DAYHOFF J E, DELEO J M. Artificial neural networks[J]. Cancer, 2001, 91(Suppl. 8): 1615-1635. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201509047
|
[21] |
SPECHT D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6): 568-576. doi: 10.1109/72.97934
|
[22] |
田万银, 徐华潮.基于相空间重构及GRNN的海防林害虫预测及效果检验[J].浙江林业科技, 2014, 34(2): 65-69. doi: 10.3969/j.issn.1001-3776.2014.02.016
TIAN W Y, XU H C. Coastal protection forest pest forecasting and verification based on phase space reconstruction and GRNN[J]. Journal of Zhejiang Forestry Science and Technology, 2014, 34(2): 65-69. doi: 10.3969/j.issn.1001-3776.2014.02.016
|
[23] |
金帅军.基于GRNN神经网络的农作物虫害量预测系统设计[D].呼和浩特: 内蒙古工业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10128-1014012754.htm
JIN S J. Design the prediction of system insect pests of crop based on GRNN neural network[D]. Hohhot: Inner Mongolia University of Technology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10128-1014012754.htm
|
[24] |
SVOZIL D, KVASNICKAB V, POSPICHALB J. Introduction to multi-layer feed-forward neural networks[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 39(1): 43-62. doi: 10.1016/S0169-7439(97)00061-0
|
[25] |
JOHANSSON E M, DOWLA F U, GOODMAN D M. Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method[J]. International Journal of Neural Systems, 1991, 2(4): 291-301. doi: 10.1142/S0129065791000261
|
[26] |
SPECHT D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6): 568-576. doi: 10.1109/72.97934
|
[27] |
GOULERMA J Y, LIATSIS P, ZENG X J, et al. Density-driven generalized regression neural networks (DD-GRNN) for function approximation[J]. IEEE Transactions on Neural Networks, 2007, 18(6): 1683-1696. doi: 10.1109/TNN.2007.902730
|
[28] |
KHAN J, WEI J S, RINGNE M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J]. Nature Medicine, 2001, 7(6): 673-679. doi: 10.1038/89044
|
[29] |
琚存勇, 蔡体久.鄂尔多斯草地生物量估测的GRNN模型实现[J].北京林业大学学报, 2008, 30(增刊1): 296-299. http://j.bjfu.edu.cn/article/id/8516
JU C Y, CAI T J. Estimation of aboveground biomass using GRNN model in Ordos grassland[J]. Journal of Beijing Forestry University, 2008, 30(Suppl. 1): 296-299. http://j.bjfu.edu.cn/article/id/8516
|
[30] |
CORNE S A, CARVER S J, KUNIN W E, et al. Predicting forest attributes in southeast Alaska using artificial neural networks[J]. Forest Science, 2004, 50(2): 259-276.
|
[31] |
KANDIEMAZ H M, KABA K, AVCI M. Estimation of monthly sunshine duration in turkey using artificial neural networks[J/OL]. International Journal of Photoenergy, 2014(2): 1-9[2016-05-10]. http://dx.doi.org/10.1155/2014/680596.
|
[32] |
SCHOLKOPF B, SUNG K K, BURGES C, et al. Comparing support vector machines with Gaussian kernels to radial basis function classifiers[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2758-2765. doi: 10.1109/78.650102
|
[33] |
DENG N Y, TIAN Y J, ZHANG C H. Support vector machines: optimization based theory, algorithms, and extensions[M]. 1st ed. New York: Chapman & Hall/CRC, 2012.
|
[34] |
ZHONG X M, LI J P, DOU H C, et al. Fuzzy nonlinear proximal support vector machine for land extraction based on remote sensing image[J/OL]. PloS ONE, 2013, 8(7): e69434[2016-05-06]. DOI: 10.1371/journal.pone.0069434.
|
[35] |
SHEN Y, HE Z, WANG Q, et al. Feature generation of hyperspectral images for fuzzy support vector machine classification[C]. Graz: IEEE Instrumentation and Measurement Technology Conference, 2012: 1977-1982.
|
[36] |
林卓, 吴承祯, 洪伟, 等.基于BP神经网络和支持向量机的杉木人工林收获模型研究[J].北京林业大学学报, 2015, 37(1): 42-47. doi: 10.13332/j.cnki.jbfu.2015.01.008
LIN Z, WU C Z, HONG W, et al. Yield model of Cunninghamia lanceolata plantation based on back propagation neural network and support vector machine[J]. Journal of Beijing Forestry University, 2015, 37(1): 42-47. doi: 10.13332/j.cnki.jbfu.2015.01.008
|
[37] |
YANG D, LI H, CHEN F, et al. A novel qualitative proof approach of the Dulong-Petit law using general regression neural networks[C]. Ottwa: 2014 IEEE Electronics, Computer and Applications, 2014: 577-580.
|
[38] |
罗瑜.支持向量机在机器学习中的应用研究[D].成都: 西南交通大学, 2007. http://cdmd.cnki.com.cn/article/cdmd-10613-2008041983.htm
LUO Y. Study on application of machine learning based on support vector machine[D]. Chengdu: Southwest Jiaotong University, 2007. http://cdmd.cnki.com.cn/article/cdmd-10613-2008041983.htm
|
[39] |
费海泽, 王鸿斌, 孔祥波, 等.马尾松毛虫发生相关气象因子筛选及预测[J].东北林业大学学报, 2014, 42(1): 136-140. doi: 10.3969/j.issn.1000-5382.2014.01.030
FEI H Z, WANG H B, KONG X B, et al. Selection and prediction of meteorological factors correlated with Dendrolimus punctatus outbreak[J]. Journal of Northeast Forestry University, 2014, 42(1): 136-140. doi: 10.3969/j.issn.1000-5382.2014.01.030
|
[40] |
陈梅香.基于SVM和GIS的梨小食心虫预测系统的研究[D].北京: 北京林业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010031389.htm
CHEN M X. Studies on prediction system of Grapholitha molesta(Busck) based on support vector machine and geographic information system[D]. Beijing: Beijing Forestry University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010031389.htm
|
[41] |
向昌盛, 周子英, 张林峰.支持向量机在害虫发生量预测中的应用[J].生物信息学, 2011, 9(1): 28-31. doi: 10.3969/j.issn.1672-5565.2011.01.007
XIANG C S, ZHOU Z Y, ZHANG L F. Application of pest occurrence prediction based on support vector machine[J]. China Journal of Bioinformatics, 2011, 9(1): 28-31. doi: 10.3969/j.issn.1672-5565.2011.01.007
|
1. |
李东来,张文华,张宏斌,陈淑鑫. 产品喷涂装置Fluent仿真内部流场数值分析. 现代制造技术与装备. 2022(07): 50-53 .
![]() |