• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
LI Bin, SHAN Jun-xin. Mixing chamber design of polyurea spray airbrush and simulation analysis based on FLUENT[J]. Journal of Beijing Forestry University, 2017, 39(3): 105-111. DOI: 10.13332/j.1000-1522.20160254
Citation: LI Bin, SHAN Jun-xin. Mixing chamber design of polyurea spray airbrush and simulation analysis based on FLUENT[J]. Journal of Beijing Forestry University, 2017, 39(3): 105-111. DOI: 10.13332/j.1000-1522.20160254

Mixing chamber design of polyurea spray airbrush and simulation analysis based on FLUENT

More Information
  • Received Date: August 10, 2016
  • Revised Date: October 23, 2016
  • Published Date: February 28, 2017
  • In order to improve the mixing effect of polyurea spray airbrush, a novel mixing chamber of polyurea spray airbrush was designed based on impinging streams principle. The mixing chamber adopted two level impingement mix and respectively used two groups of T types and Y types. After the mixing chamber model was designed by the SolidWorks, we used FLUENT to simulate with the methods of convective heat transfer and the impingement mix of the cold and hot water in the mixing chamber and calculated the micromixing time that the fluid stayed in the mixing chamber. The results showed that under rational conditions, the more multiplicity the mixing stages and impingement modes of T types and Y types are, the better mixing effects the impinging streams mixing chamber will be. The main mixing zone of impinging streams mixing chamber is the impinging area. In the spray airbrush, the total staying time of the fluid is about 5.71 ms, which meet the requirements that some materials have the features of quick mixing. The micromixing time is less than 1 ms, so the mixing effect is very good.
  • [1]
    伍沅.撞击流——原理·性质·应用[M].北京:化学工业出版社, 2006: 3-12.

    WU Y. Impinging streams: principle, nature, applications[M]. Beijing: Chemical Industry Press, 2006: 3-12.
    [2]
    ELPERIN I T. Heat and mass transfer in opposing currents[J]. Energy Physics, 1961, 56(6): 62-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b34257247972d14b82b30c56ef64267f
    [3]
    骆培成, 程易, 汪展文, 等.液—液快速混合设备研究进展[J].化工进展, 2005, 24(12): 1319-1326. doi: 10.3321/j.issn:1000-6613.2005.12.001

    LUO P C, CHENG Y, WANG Z W, et al. Research progress of liquid-liquid fast mixing equipment[J]. Chemical Industry and Engineering Progress, 2005, 24 (12): 1319-1326. doi: 10.3321/j.issn:1000-6613.2005.12.001
    [4]
    PRIMEAUX D J. Polyurea spray technology in commercial applications[C]//60 Years of Polyurethanes: International Symposium and Exhibition. Michigan: University of Detroit, 1998: 224-238.
    [5]
    黄微波, 王宝柱, 陈酒姜, 等.喷涂聚脲弹性体技术的发展[J].中国涂料, 2001, 5(11): 31-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhonggtl200105011

    HUANG W B, WANG B Z, CHEN J J, et al. The development of spray polyurea elastomer technology[J]. Coatings of China, 2001, 5(11): 31-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhonggtl200105011
    [6]
    PRIMEAUX D J. A study of polyurea spray elastomer system[J]. High Solid Coatings, 1994, 15: 2-7.
    [7]
    商汉章, 李运德, 沙金.喷涂聚脲弹性体技术的现状和应用[J].中国涂料, 2008, 23(9): 54-57. doi: 10.3969/j.issn.1006-2556.2008.09.017

    SANG H Z, LI Y D, SHA J. Status and use of spraying polyurea elastomer technology[J]. Coatings of China, 2008, 23(9): 54-57. doi: 10.3969/j.issn.1006-2556.2008.09.017
    [8]
    黄微波, 吕平.绿色材料—喷涂聚脲的技术原理[J].房材与应用, 2000(2): 22-27. doi: 10.3969/j.issn.1673-7237.2000.02.009

    HUANG W B, LV P. Technology principle of spray polyurea material[J]. Housing Materials & Applications, 2000(2): 22-27. doi: 10.3969/j.issn.1673-7237.2000.02.009
    [9]
    李友凤, 叶红齐, 何显达, 等.撞击流混合器微观混合性能的研究[J].高校化学工程学报, 2012, 26(1): 49-55. doi: 10.3969/j.issn.1003-9015.2012.01.009

    LI Y F, YE H Q, HE X D, et al. Study on micromixing characteristics of impinging streams mixers[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(1): 49-55. doi: 10.3969/j.issn.1003-9015.2012.01.009
    [10]
    刘海峰, 刘辉, 龚欣, 等.大喷嘴间距对置撞击流径向速度分布[J].华东理工大学学报, 2000, 26(2): 168-171. doi: 10.3969/j.issn.1006-3080.2000.02.014

    LIU H F, LIU H, GONG X, et al. Radial velocity of wide spaced impinging streams[J]. Journal of East China University of Science and Technology, 2000, 26(2): 168-171. doi: 10.3969/j.issn.1006-3080.2000.02.014
    [11]
    SONIA B, HATEM M, GEORGES L P, et al. Numerical and experimental study of two turbulent opposed plane jets[J]. Heat and Mass Transfer, 2003, 39(8-9): 675-686. doi: 10.1007/s00231-002-0336-5
    [12]
    邹春, 刘朝霞, 张立麒, 等.不同湍流模型比较模拟撞击流[J].华中科技大学学报(自然科学版), 2006, 34(9): 72-76. doi: 10.3321/j.issn:1671-4512.2006.09.023

    ZOU C, LIU Z X, ZHANG L Q, et al. Comparison among turbulence models for impinging jet flows[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2006, 34(9): 72-76. doi: 10.3321/j.issn:1671-4512.2006.09.023
    [13]
    胡仁喜. FLUENT14. 5流场分析从入门到精通[M].北京:机械工业出版社, 2014: 205-210.

    HU R X. FLUENT14. 5 Flow field analysis from entry to master[M]. Beijing: China Machine Press, 2014: 205-210.
    [14]
    黄微波, 杨宇润, 王宝柱.喷涂聚脲弹性体技术[J].聚氨酯工业, 1999, 14(4): 7-11. http://www.cqvip.com/main/detail.aspx?id=3847209

    HUANG W B, YANG Y R, WANG B Z. Spray polyurea elastomer technology[J]. Polyurethane Industry. 1999, 14(4): 7-11. http://www.cqvip.com/main/detail.aspx?id=3847209
    [15]
    刘登良.物料工艺[M].北京:化学工业出版社, 2009: 1983-1984.

    LIU D L. Material process[M]. Beijing: Chemical Industry Press, 2009: 1983-1984.
    [16]
    黄微波.喷涂聚脲弹性体技术—聚脲化学反应原理[J].上海涂料, 2006, 44(4): 29-33. doi: 10.3969/j.issn.1009-1696.2006.04.008

    HUANG W B. Spray polyurea elastomer technology: polyurea chemical reaction principle[J]. Shanghai Coating, 2006, 44(4): 29-33. doi: 10.3969/j.issn.1009-1696.2006.04.008
    [17]
    李成植, 张建伟, 邱金梁.撞击流混合器的出口位置对其混合性能的影响[J].化工机械, 2009, 36(1): 38-41. doi: 10.3969/j.issn.0254-6094.2009.01.010

    LI C Z, ZHANG J W, QIU J L. Influence of the exit positions of impinging stream reactors on the their mixing performance[J]. Chemical Engineering and Machinery, 2009, 36(1): 38-41. doi: 10.3969/j.issn.0254-6094.2009.01.010
    [18]
    杨海健, 张建文, 苗健瑞.管式填料床反应器内的湍流微观混合研究[J].高校化学工程学报, 2006, 20(3): 390-394. doi: 10.3321/j.issn:1003-9015.2006.03.012

    YANG H J, ZHANG J W, MIAO J R. Study on turbulent micromixing in a tubular packed bed reactor[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(3): 390-394. doi: 10.3321/j.issn:1003-9015.2006.03.012
    [19]
    伍沅.撞击流性质及其应用[J].化工进展, 2001, 20(11): 8-13. doi: 10.3321/j.issn:1000-6613.2001.11.003

    WU Y. Properties and application of impinging stream[J]. Chemical Industry and Engineering Progress, 2001, 20(11): 8-13. doi: 10.3321/j.issn:1000-6613.2001.11.003
    [20]
    ROUSSEAUX J M, MUHR H, PLASARI E. Mixing and micromixing times in the forced vortex region of unbaffled mixing devices[J]. Canadian Journal of Chemical Engineering, 2001, 79(5): 697-707. doi: 10.1002/cjce.5450790501
    [21]
    李崇, 李志鹏, 高正明, 等.撞击流反应器微观混合性能的研究[J].北京化工大学学报(自然科学版), 2009, 36(6): 1-4. doi: 10.3969/j.issn.1671-4628.2009.06.001

    LI C, LI Z P, GAO Z M, et al. Micromixing characteristics of an opposed-jet reactor[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2009, 36(6): 1-4. doi: 10.3969/j.issn.1671-4628.2009.06.001
  • Cited by

    Periodical cited type(15)

    1. 冯旭环,周璐,熊伟,宗桦. 大渡河干热河谷区本土优势灌草植物根系的抗拉力学特性及其影响因素研究. 干旱区资源与环境. 2023(07): 159-169 .
    2. 李宏斌,张旭,姚晨,杜峰. 陕北黄土区不同植物根系抗拉力学特性研究. 水土保持研究. 2023(04): 122-129 .
    3. 李金波,伍红燕,赵斌,陈济丁,宋桂龙. 模拟边坡条件下常见护坡植物苗期根系构型特征. 生态学报. 2023(24): 10131-10141 .
    4. 赵佳愉,伍红燕,史蔚林,宋桂龙. 聚丙烯酰胺添加浓度对种基盘特性的影响. 草原与草坪. 2021(05): 16-21 .
    5. 黄炎和,李思诗,岳辉,彭绍云,谢炎敏,林根根,周曼,吴俣,蔡学智. 崩岗区四种草本植物根系抗拉特性及其与化学成分的关系. 亚热带水土保持. 2021(04): 9-15 .
    6. 李义强,伍红燕,宋桂龙,赵斌,李一为,夏宇,孙盛年,梁燕宁. 岩石边坡坡度对胡枝子和紫穗槐根系形态特征影响. 草原与草坪. 2020(02): 23-29 .
    7. 曹磊,马海天才. 不同草本植物根系力动力学及抗压力特征研究. 干旱区资源与环境. 2019(01): 164-170 .
    8. 李淑霞,刘亚斌,余冬梅,胡夏嵩,祁兆鑫. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究. 盐湖研究. 2019(01): 116-131 .
    9. 李瑞燊,刘静,王博,张欣,胡晶华,苏慧敏,白潞翼,王多民. 反复施加拉剪组合力对小叶锦鸡儿直根材料力学特性的影响. 水土保持学报. 2019(05): 121-125 .
    10. 马海天才. 不同草本植物根系的抗压动力学特征. 北方园艺. 2018(19): 71-77 .
    11. 王博,刘静,王晨嘉,张欣,刘嘉伟,李强,张强. 半干旱矿区3种灌木侧根分支处折力损伤后的自修复特性. 应用生态学报. 2018(11): 3541-3549 .
    12. 韦杰,李进林,史炳林. 紫色土耕地埂坎2种典型根——土复合体抗剪强度特征. 应用基础与工程科学学报. 2018(03): 483-492 .
    13. 刘昌义,胡夏嵩,赵玉娇,窦增宁. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究. 工程地质学报. 2017(01): 1-10 .
    14. 谷利茶,王国梁. 氮添加对油松幼苗不同径级细根碳水化合物含量的影响. 生态学杂志. 2017(08): 2184-2190 .
    15. 杨闻达,王桂尧,常婧美,张永杰. 主直根系拉拔力的室内试验研究. 中国水土保持科学. 2017(04): 111-116 .

    Other cited types(25)

Catalog

    Article views (2659) PDF downloads (24) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return