• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
CHEN Ming-jian, CHEN Zhi-bo, YANG Meng, MO Qin. Research on tree species identification algorithm based on combination of leaf traditional characteristics and distance matrix as well as corner matrix[J]. Journal of Beijing Forestry University, 2017, 39(2): 108-116. DOI: 10.13332/j.1000-1522.20160351
Citation: CHEN Ming-jian, CHEN Zhi-bo, YANG Meng, MO Qin. Research on tree species identification algorithm based on combination of leaf traditional characteristics and distance matrix as well as corner matrix[J]. Journal of Beijing Forestry University, 2017, 39(2): 108-116. DOI: 10.13332/j.1000-1522.20160351

Research on tree species identification algorithm based on combination of leaf traditional characteristics and distance matrix as well as corner matrix

More Information
  • Received Date: October 26, 2016
  • Revised Date: December 20, 2016
  • Published Date: January 31, 2017
  • Aiming at the problem of tree species identification based on leaf characteristics, this paper self-defines two leaf outline characteristics of leaf angle and edge angle mean on the basis of 25 kinds of characteristics such as leaf texture, invariant moments and traditional shapes, regards the definition and inference of similar polygon as theoretical basis and proposes a kind of classification method for tree species identification which is to construct distance matrix and corner matrix based on leaf outline. Firstly, the tree leaf image was pre-processed to extract the normalized leaf feature vector. Then KNN was used to choose the top 20 of the highest similarity result set. And then distance matrix and corner matrix were constructed to identify and match more accurately. During pre-processing, in order to obtain more accurate characteristics of leaf outline, this paper designs an image preprocessing algorithm of eliminating leaf shadow by taking advantage of significant differences between saturation and chromaticity in HSV color space. During identification and matching, this paper uses the Douglas Peucker approximation algorithm to extract the approximate polygon of leaf outline, and defines calculation methods of distance matrix, corner matrix, matrix element similarity, matrix similarity and comprehensive similarity, and designs a kind of algorithm combining global matching and local matching. The algorithm had been implemented and run on Android mobile phone platform. Results showed that the accuracy of the algorithm was 99.61% among 1 907 complete samples of 32 categories and 94.92% among 851 incomplete samples of 32 categories in Flavia dataset. In Leafsnap dataset, the accuracy of the algorithm was 98.26% of top 5 among 23 147 Lab samples of 185 categories. Compared with other algorithms, this kind of algorithm had higher identification accuracy, better description ability for leaf outline, better robust performance for incomplete leaf, twisted leaf and shadowed leaf, and better practicability and adaptability.
  • [1]
    王丽君, 淮永建, 彭月橙.基于叶片图像多特征融合的观叶植物种类识别[J].北京林业大学学报, 2015, 37(1):55-61. doi: 10.13332/j.cnki.jbfu.2015.01.006

    WANG L J, HUAI Y J, PENG Y C.Follow-leaf plant species identification based on multi-feature fusion of leaf images[J]. Journal of Beijing Forestry University, 2015, 37(1):55-61. doi: 10.13332/j.cnki.jbfu.2015.01.006
    [2]
    袁津生, 姚宇飞.基于分形维度的叶片图像识别方法[J].计算机工程与设计, 2012, 33(2):670-673. doi: 10.3969/j.issn.1000-7024.2012.02.050

    YUAN J S, YAO Y F.Face image recognition method based on fractal dimension[J]. Computer Engineering and Design, 2012, 33(2): 670-673. doi: 10.3969/j.issn.1000-7024.2012.02.050
    [3]
    YAHIAOUI I, MZOUGHI O, BOUJEMAA N. Leaf shape descriptor for tree species identification[C]//2012 IEEE International Conference on Multimedia and Expo. Amsterdam: IEEE, 2012: 254-259. https: //www.researchgate.net/publication/261125339_Leaf_Shape_Descriptor_for_Tree_Species_Identification
    [4]
    李洋, 李岳阳, 罗海驰, 等.基于形状特征的植物叶片在线识别方法[J].计算机工程与应用, 2017, 53(2):162-165. doi: 10.3778/j.issn.1002-8331.1504-0233

    LI Y, LI Y Y, LUO H C, et al. On-line identification method of plant leaf based on shape feature[J]. Computer Engineering and Applications, 2017, 53(2):162-165. doi: 10.3778/j.issn.1002-8331.1504-0233
    [5]
    SATTI V, SATYA A, SHARMA S. An automatic leaf recognition system for plant identification using machine vision technology[J]. International Journal of Engineering Science and Technology, 2013, 5(4): 874-879. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_83ccc22bcf4760049fb096a6365da736
    [6]
    BACKES A R, CASANOVA D, BRUNO O M. Plant leaf identification based on volumetric fractal dimension[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23(6): 1145-1160. doi: 10.1142/S0218001409007508
    [7]
    谢莉, 成运, 曾接贤, 等.基于颜色和梯度方向共生直方图的图像检索[J].计算机工程与应用, 2016, 52(10):181-186. doi: 10.3778/j.issn.1002-8331.1406-0366

    XIE L, CHENG Y, ZENG J X, et al. Image retrieval based on color and gradient directional symbiotic histogram[J]. Computer Engineering and Applications, 2016, 52(10):181-186. doi: 10.3778/j.issn.1002-8331.1406-0366
    [8]
    MALLAH C, COPE J, ORWELL J. Plant leaf classification using probabilistic integration of shape, texture and margin features[J/OL].[2014-01-06]. http://www.actapress.com/Abstract.aspx?paperId=455022.
    [9]
    WANG X F, HUANG DS, DU J X, et al. Classification of plant leaf images with complicated background[J]. Applied Mathematics & Computation, 2008, 205(2):916-926. https://www.sciencedirect.com/science/article/abs/pii/S0096300308003718
    [10]
    NOVOTNY P, SUK T. Leaf recognition of woody species in Central Europe[J]. Biosystems Engineering, 2013, 115(4): 444-452. doi: 10.1016/j.biosystemseng.2013.04.007
    [11]
    LE T L, NGUYEN Q K, PHAM N H. Leaf based plant identification system for android using surf features in combination with bag of words model and supervised learning[C]//2013 International Conference on Advanced Technologies for Communications (ATC 2013). Ho Chi Minh City: IEEE, 2013: 404-407. https: //www.researchgate.net/publication/259644407_Leaf_based_plant_identification_system_for_Android_using_SURF_features_in_combination_with_Bag_of_Words_model_and_supervised_learning
    [12]
    SUMATHI C S, KUMAR A V S. Neural network based plant identification using leaf characteristics fusion[J]. International Journal of Computer Applications, 2014, 89(5):31-35. doi: 10.5120/15499-4141
    [13]
    刘念, 阚江明.基于多特征融合和深度信念网络的植物叶片识别[J].北京林业大学学报, 2016, 38(3):110-119. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201603014

    LIU N, KAN J M. Establishment of plant leaf based on multi-feature fusion and depth-of-concept network[J]. Journal of Beijing Forestry University, 2016, 38(3): 110-119. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201603014
    [14]
    SHAYAN H, SAJEEVAN G. Plant recognition from leaf image through artificial neural network[J]. International Journal of Computer Applications, 2013, 62(17):15-18. doi: 10.5120/10172-4897
    [15]
    HU R X, JIA W, LING H B, et al. Multiscale distance matrix for fast plant leaf recognition[J]. IEEE transactions on image processing, 2012, 21(11): 4667-4672. doi: 10.1109/TIP.2012.2207391
    [16]
    GWO C Y, WEI C H. Plant identification through images: using feature extraction of key points on leaf contours1[J]. Applications in Plant Sciences, 2013, 1(11):1-9 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM25202493
    [17]
    KUMAR N, BELHUMENR P N, BISWAS A, et al. Leafsnap: a computer vision system for automatic plant species identification[EB/OL].[2016-08-20]. http://neerajkumar.org/base/papers/nk_eccv2012_leafsnap.pdf.
    [18]
    董红霞, 郭斯羽.一种结合形状与纹理特征的植物叶片分类方法[J].计算机工程与应用, 2014, 50(23):185-188. doi: 10.3778/j.issn.1002-8331.1301-0138

    DONG H X, GUO S Y. Classification of plant leaf based on shape and texture features[J]. Computer Engineering and Applications, 2014, 50 (23): 185-188. doi: 10.3778/j.issn.1002-8331.1301-0138
    [19]
    朱黎辉, 李晓宁.基于多特征组合的球形果蔬智能分选方法[J].计算机工程与应用, 2016, 52(5):173-178. doi: 10.3778/j.issn.1002-8331.1403-0280

    ZHU L H, LI X N.Intelligent sorting method of spherical fruits and vegetables based on multi-feature combination[J]. Computer Engineering and Applications, 2016, 52(5): 173-178. doi: 10.3778/j.issn.1002-8331.1403-0280
    [20]
    VISVALINGAM M, WHYATT D. Line generalisation by repeated elimination of points[J]. The Cartographic Journal, 1993, 30(1):46-51. doi: 10.1179/caj.1993.30.1.46
    [21]
    曾接贤, 刘秀朋, 符祥.角点距离矩阵和同心圆划分的曲线描述与匹配[J].中国图象图形学报, 2012, 17(8):1011-1020. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201208016

    ZENG J X, LIU X P, FU X. Curve description and matching of corner distance matrix and concentric circle partition[J]. Chinese Journal of Image and Graphics, 2012, 17(8): 1011-1020. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201208016
    [22]
    WU S G, BAO F S, XU E Y, et al. A leaf recognition algorithm for plant classification using probabilistic neural network[C]//2007 IEEE International Symposium on Signal Processing and Information Technology.Cairo: IEEE, 2007: 11-16. http: //www.oalib.com/paper/4021582
    [23]
    WU S G, BAO F S, XU E Y, et al. A leaf recognition algorithm for plant classification using PNN (probabilistic neural network)[EB/OL].[2016-09-10]. http://flavia.sourceforge.net/.
  • Cited by

    Periodical cited type(17)

    1. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    2. 李慧璇,马红亮,尹云锋,高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征. 植物生态学报. 2023(05): 618-628 .
    3. 罗国娜,车震宇. 马尾松凋落物对土壤氮循环与微生物的影响. 山东农业大学学报(自然科学版). 2023(04): 553-561 .
    4. 韦昌林,李毅,单立山,解婷婷,张鹏. 降水变化对典型荒漠植物凋落物分解的影响. 草地学报. 2022(05): 1280-1289 .
    5. Hao Qu,XueYong Zhao,XiaoAn Zuo,ShaoKun Wang,XuJun Ma,Xia Tang,XinYuan Wang,Eduardo Medina-Roldán. Litter decomposition in fragile ecosystems: A review. Sciences in Cold and Arid Regions. 2022(03): 151-161 .
    6. 王文秀,栾军伟,王一,杨怀,赵阳,李丝雨,梁昌强,孔祥河,刘世荣. 模拟干旱和磷添加对热带低地雨林叶凋落物分解的影响. 生态学报. 2022(15): 6160-6174 .
    7. 李慧业,林永慧,何兴兵. 4种内源真菌对马尾松凋落叶分解的影响. 西南农业学报. 2021(03): 618-625 .
    8. 王光燚,上官周平,方燕. 氮沉降对细根分解影响的研究进展. 水土保持研究. 2020(02): 383-391 .
    9. 舒韦维,陈琳,刘世荣,曾冀,李华,郑路,陈文军. 减雨对南亚热带马尾松人工林凋落物分解的影响. 生态学报. 2020(13): 4538-4545 .
    10. 叶贺,红梅,赵巴音那木拉,李静,闫瑾,张宇晨,梁志伟. 水氮控制对短花针茅荒漠草原根系分解的影响. 应用与环境生物学报. 2020(05): 1169-1175 .
    11. 杨晶晶,周正立,吕瑞恒,梁继业,王雄. 干旱生境下3种植物叶凋落物分解动态特征. 干旱区研究. 2019(04): 916-923 .
    12. 周书玉,袁川,王景燕,龚伟,唐海龙. 菌剂和外源氮素添加对青花椒采收剩余物分解的影响. 四川农业大学学报. 2019(06): 799-806 .
    13. 王欣,郭延朋,赵辉,孟凡军,刘国萍. 华北落叶松与白桦叶凋落物混合分解及其养分动态. 林业与生态科学. 2018(01): 29-36 .
    14. 郑欣颖,佘汉基,薛立,蔡金桓. 外源性氮和磷添加对马尾松凋落叶分解及土壤特性的影响. 生态环境学报. 2017(10): 1710-1718 .
    15. 佘汉基,蔡金桓,薛立,郑欣颖. 模拟外源性氮磷对尾叶桉和马占相思混合凋落叶分解的影响. 西北林学院学报. 2017(06): 45-52 .
    16. 蔡金桓,郑欣颖,薛立,佘汉基. 外源性氮和磷对杉木和藜蒴锥混合凋落叶分解的影响. 西南林业大学学报(自然科学). 2017(04): 103-112 .
    17. 蔡金桓,王卓敏,薛立,郑欣颖,佘汉基. 外源性氮和磷对藜蒴林凋落叶分解的影响. 中南林业科技大学学报. 2017(07): 105-111 .

    Other cited types(16)

Catalog

    Article views (1676) PDF downloads (19) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return