• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
MU Yan-mei, LI Jun, TONG Xiao-juan, ZHANG Jin-song, MENG Ping, REN Bo. Evapotranspiration simulated by Penman-Monteith and Shuttleworth-Wallace models over a mixed plantation in the southern foot of the Taihang Mountain, northern China[J]. Journal of Beijing Forestry University, 2017, 39(11): 35-44. DOI: 10.13332/j.1000-1522.20170060
Citation: MU Yan-mei, LI Jun, TONG Xiao-juan, ZHANG Jin-song, MENG Ping, REN Bo. Evapotranspiration simulated by Penman-Monteith and Shuttleworth-Wallace models over a mixed plantation in the southern foot of the Taihang Mountain, northern China[J]. Journal of Beijing Forestry University, 2017, 39(11): 35-44. DOI: 10.13332/j.1000-1522.20170060

Evapotranspiration simulated by Penman-Monteith and Shuttleworth-Wallace models over a mixed plantation in the southern foot of the Taihang Mountain, northern China

More Information
  • Received Date: March 06, 2017
  • Revised Date: May 02, 2017
  • Published Date: October 31, 2017
  • Evapotranspiration (ET) is one of the key processes of terrestrial energy/water transfer and carbon exchange, and it is also an important factor affecting regional climate and global carbon cycle. It is important to simulate ET over forest ecosystem to evaluate the role of forests in surface water cycle. In this paper, the Penman-Monteith (P-M) model and the Shuttleworth-Wallace (S-W) model were used to simulate ET over a mixed plantation in the southern foot of the Taihang Mountain, northern China. The mixed plantation is mainly composed of Quercus variabilis, Platycladus orientalis and Robinia pseudoacacia. In order to evaluate the model applicability, ET simulated by the S-W model and the P-M model was compared with the measured one obtained by the eddy covariance technique. In addition, the sensitivities of P-M and S-W models to their resistance parameters were analyzed and the diurnal and seasonal variations in ET were explored. ET simulated by the S-W model and the P-M model was about 6% and 21% lower than the measured ET, respectively. Compared with the S-W model, ET simulated by the P-M model was less than the measured one. Compared with the P-M model, the correlation coefficient, agreement index, root mean square error, mean absolute error between measured ET and simulated ET by the S-W model were lower. The fitted curve of the relation between ET simulated by the S-W model and measured ET was closer to the 1:1 line than P-M model. Accordingly, ET simulated by the S-W model was higher than P-M model. It was suggested that the S-W model was more suitable for simulating ET in this region, and ET simulated by the P-M model was low. ET simulated by the P-M model and the S-W model was most sensitive to the change of canopy resistance. The second sensitive parameter was the aerodynamic resistance from canopy to reference height for the S-W model, and it was insensitive to the aerodynamic resistance from soil to the canopy. Transpiration and evaporation were most sensitive to the canopy resistance and soil surface resistance, respectively. There were no significant differences between the diurnal and seasonal variations in ET simulated by the S-W model and the P-M model, but the simulation accuracy of the S-W model was higher than P-M model. ET simulated by the P-M model in 2009 was obviously lower than the measured one. The ratio of E to ET was 11.3%, and E accounted for 10% of total ET simulated by the S-W model. Therefore, the possible reason was that soil surface resistance was not taken into account in the P-M model. The reason of the deference between simulated ET by the S-W model and the P-M model and measured ET may be that the empirical coefficients in the models are different for any vegetation types, especially how to choose the suitable resistance parameters. Moreover, meteorological factors are different in varied regions, which will influence the model accuracy. Accordingly, in order to improve the model accuracy, the climate and environment situation in study area should be taken into account to find a suitable resistance parameter of the model.
  • [1]
    JUNG M, REICHSTRIN M, CIAIS P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467: 951-954. doi: 10.1038/nature09396
    [2]
    吕厚荃, 于贵瑞.几种实际蒸散计算方法在土壤水分模拟中的应用[J].资源科学, 2001, 23(6): 85-90. doi: 10.3321/j.issn:1007-7588.2001.06.017

    LÜ H Q, YU G R. Application of some actual evapotranspiration models in simulation of soil moisture[J]. Resources Science, 2001, 23(6): 85-90. doi: 10.3321/j.issn:1007-7588.2001.06.017
    [3]
    徐富安, 赵炳梓, 唐万龙.豫北地区水分生态环境要素演变及其意义[J].土壤学报, 2003, 40(1): 29-36. doi: 10.3321/j.issn:0564-3929.2003.01.004

    XU F A, ZHAO B Z, TANG W L. Change of some environmental factors and its ecological significance in north Henan Province, China[J]. Acta Pedologica Sinica, 2003, 40(1): 29-36. doi: 10.3321/j.issn:0564-3929.2003.01.004
    [4]
    刘勤, 严昌荣, 赵彩霞, 等.黄河流域日潜在蒸散量变化及气象敏感要素分析[J].农业工程学报, 2014, 30(17): 157-166. doi: 10.3969/j.issn.1002-6819.2014.17.021

    LIU Q, YAN C R, ZHAO C X, et al. Changes of daily potential evapotranspiration and analysis of its sensitivity coefficients to key climatic variables in Yellow River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(17): 157-166. doi: 10.3969/j.issn.1002-6819.2014.17.021
    [5]
    EAMUS D, CLEVERLY J, BOULAIN N, et al. Carbon and water fluxes in an arid-zone Acacia savanna woodland: an analyses of seasonal patterns and responses to rainfall events[J]. Agricultural and Forest Meteorology, 2013, 182-183: 225-238. doi: 10.1016/j.agrformet.2013.04.020
    [6]
    XU M J, WEN X F, WANG H M, et al. Effects of climatic factors and ecosystem responses on the inter-annual variability of evapotranspiration in a coniferous plantation in subtropical China[J/OL]. PLoS ONE, 2014, 9(1): e85593[2017-02-12]. doi: 10.1371/journal.pone.0085593.
    [7]
    TONG X J, ZHANG J S, MENG P, et al. Environmental controls of evapotranspiration in a mixed plantation in North China[J]. International Journal of Biometeorology, 2017, 61(2): 227-238. doi: 10.1007/s00484-016-1205-0
    [8]
    ALLAN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: guidelines for computing crop water requirements[M]. Rome: FAO, 1998: 56.
    [9]
    HARGREAVES G H, SAMANI Z A. Reference crop evapotranspiration from temperature[J]. Applied Engineering in Agriculture, 1985, 1(2): 96-99. doi: 10.13031/2013.26773
    [10]
    PRIESTLEY C H B, TAYLOR R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review, 2009, 100(2): 81-92. doi: 10.1175-1520-0493(1972)100-0081-OTAOSH-2.3.CO%3b2/
    [11]
    MONTEITH J L, UNSWORTH M. Principles of environmental physics[M]. 2nd ed. London: Butterworth-Heinemann, 1990:286.
    [12]
    莫兴国, 林忠辉, 刘苏峡.基于Penman-Monteith公式的双源模型的改进[J].水利学报, 2000, 31(5): 6-11. doi: 10.3321/j.issn:0559-9350.2000.05.002

    MO X G, LIN Z H, LIU S X. An improvement of the dual-source model based on Penman-Monteith formula[J]. Journal of Hydraulic Engineering, 2000, 31(5): 6-11. doi: 10.3321/j.issn:0559-9350.2000.05.002
    [13]
    ORTEGA-FARIAS S, OLIOSO A, ANTONIOLETTI R, et al. Evaluation of the Penman-Monteith model for estimating soybean evapotranspiration[J]. Irrigation Science, 2004, 23(1): 1-9. doi: 10.1007/s00271-003-0087-1
    [14]
    ZHANG B, KANG S, LI F, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China[J]. Agricultural and Forest Meteorology, 2008, 148(10): 1629-1640. doi: 10.1016/j.agrformet.2008.05.016
    [15]
    ZHANG X Y, YU T F, GAO G L, et al. Comparison of three evapotranspiration models with eddy covariance measurements for a Populus euphratica Oliv. forest in an arid region of northwestern China[J]. Journal of Arid Land, 2016, 8(1): 146-156. doi: 10.1007/s40333-015-0017-0
    [16]
    GARDIOL J M, SERIO L A, MAGGIORA A I D. Modelling evapotranspiration of corn (Zea mays) under different plant densities[J]. Journal of Hydrology, 2003, 271(1-4): 188-196. doi: 10.1016/S0022-1694(02)00347-5
    [17]
    LI X Y, YANG P L, REN S M, et al. Modeling cherry orchard evapotranspiration based on an improved dual-source model[J]. Agricultural Water Management, 2010, 98(1): 12-18. doi: 10.1016/j.agwat.2010.07.019
    [18]
    刘绍民, 孙中平, 李小文, 等.蒸散量测定与估算方法的对比研究[J].自然资源学报, 2003, 18(2): 161-167. doi: 10.3321/j.issn:1000-3037.2003.02.006

    LIU S M, SUN Z P, LI X W, et al. A comparative study on models for estimating evapotranspiration[J]. Journal of Natural Resources, 2003, 18(2): 161-167. doi: 10.3321/j.issn:1000-3037.2003.02.006
    [19]
    李俊, 韩凤明, 同小娟, 等.麦田蒸散模型的改进及其对阻力参数的敏感性分析[J].中国农业气象, 2014, 35(6): 635-643. doi: 10.3969/j.issn.1000-6362.2014.06.005

    LI J, HAN F M, TONG X J, et al. Evapotranspiration models for a winter wheat field: the improvements and analyses on their sensitivities to the resistance parameters[J]. Chinese Journal of Agrometeorology, 2014, 35(6): 635-643. doi: 10.3969/j.issn.1000-6362.2014.06.005
    [20]
    ZHOU M C, ISHIDAIRA H, HAPUARACHCHI H P, et al. Estimating potential evapotranspiration using Shuttleworth-Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River Basin[J]. Journal of Hydrology, 2006, 327(1): 151-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=934cca5d0361c365516c0356c01bf7c8
    [21]
    刘远, 周买春, 陈芷菁, 等.基于S-W模型的韩江流域潜在蒸散发的气候和植被敏感性[J].农业工程学报, 2013, 29(10): 92-100. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201310015

    LIU Y, ZHOU M C, CHEN Z J, et al. Sensitivity of the potential evapotranspiration to climate and vegetation in Hanjiang River Basin based on S-W Model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10): 92-100. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201310015
    [22]
    ZHAO L W, ZHANG W Z. Evapotranspiration of an oasis-desert transition zone in the middle stream of Heihe River, Northwest China[J]. Journal of Arid Land, 2014, 6(5): 529-539. doi: 10.1007/s40333-014-0061-1
    [23]
    沈竞, 张弥, 肖薇, 等.基于改进S-W模型的千烟洲人工林蒸散组分拆分及其特征[J].生态学报, 2016, 36(8): 2164-2174. http://www.cnki.com.cn/article/cjfdtotal-stxb201608007.htm

    SHEN J, ZHANG M, XIAO W, et al. Modeling evapotran-spiration and its components in Qianyanzhou plantation based on modified SW model[J]. Acta Ecologica Sinica, 2016, 36(8) : 2164-2174. http://www.cnki.com.cn/article/cjfdtotal-stxb201608007.htm
    [24]
    JIANG C, NIE Z, MU X M, et al. Potential evapotranspiration change and its attribution in the Qinling Mountains and surrounding area, China, during 1960-2012[J]. Journal of Water and Climate Change, 2016, 7 (3): 526-541. doi: 10.2166/wcc.2016.110
    [25]
    刘佳, 同小娟, 张劲松, 等.太阳辐射对黄河小浪底人工混交林净生态系统碳交换的影响[J].生态学报, 2014, 34(8): 2118-2127. http://d.old.wanfangdata.com.cn/Periodical/stxb201408024

    LIU J, TONG X J, ZHANG J S, et al. Impacts of solar radiation on net ecosystem carbon exchange in a mixed plantation in the Xiaolangdi Area[J]. Acta Ecologica Sinica, 2014, 34(8): 2118-2127. http://d.old.wanfangdata.com.cn/Periodical/stxb201408024
    [26]
    同小娟, 张劲松, 孟平, 等.华北低丘山地人工林生态系统净碳交换与气象因子的关系[J].生态学报, 2009, 29(12): 6638-6645. doi: 10.3321/j.issn:1000-0933.2009.12.040

    TONG X J, ZHANG J S, MENG P, et al. Relationship between net ecosystem carbon exchange and meteorological factors in a plantation in the hilly area of the North China[J]. Acta Ecologica Sinica, 2009, 29(12): 6638-6645. doi: 10.3321/j.issn:1000-0933.2009.12.040
    [27]
    WEBB E K, PEARMAN G I, LEUNING R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 106: 85-100. https://academic.oup.com/jpe
    [28]
    PATTEY E, STRACHAN I B, DESJARDINS R L, et al. Measuring nighttime CO2 flux over terrestrial ecosystems using eddy covariance and nocturnal boundary layer methods[J]. Agricultural and Forest Meteorology, 2002, 113(1-4): 145-158. doi: 10.1016/S0168-1923(02)00106-5
    [29]
    朱治林, 孙晓敏, 袁国富, 等.中国通量网(ChinaFLUX)夜间CO2涡度相关通量数据处理方法研究[J].中国科学(D辑地球科学), 2006, (增刊1): 34-44. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2006S1003.htm

    ZHU Z L, SUN X M, YUAN G F, et al. Analysis the CO2 eddy covariance flux data at night in China's flux network (China FLUX)[J]. Science in China (Ser.D Earth Sciences), 2006, (Suppl.1): 34-44. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2006S1003.htm
    [30]
    NOILHAN J, PLANTON S. A simple parameterization of land surface for meteorological models[J]. Monthly Weather Review, 1989, 117(3): 536-549. doi: 10.1175/1520-0493(1989)117 < 0536:ASPOLS > 2.0.CO; 2
    [31]
    VERMA S B, BALDOCCHI D D, ANDERSON D E, et al. Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest[J]. Boundary-Layer Meteorology, 1986, 36(1): 71-91. doi: 10.1007-BF00117459/
    [32]
    SHUTTLEWORTH W J, WALLACE J S. Evaporation from sparse crops-an energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 111: 839-855. doi: 10.1002/qj.49711146910
    [33]
    STANNARD D I. Comparison of Penman-Monteith, Shuttle-Wallace, and modified Priestley-Taylor evapotranspiration model for wildland vegetation in semiarid rangeland[J]. Water Resources Research, 1993, 29(5): 1379-1392. doi: 10.1029/93WR00333
    [34]
    DOUGLAS E M, JACOBS J M, SUMNER D M, et al. A comparison of models for estimating potential evapotranspiration for Florida land cover types[J]. Journal of Hydrology, 2009, 373(3): 366-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9446a6b2dbcff13227667ef51caceccd
    [35]
    FARAHANI H J, AHUJA L R. Evapotranspiration of partial canopy/residue-covered fields[J]. Transactions of the Asae, 1996, 39(6): 2051-2064. doi: 10.13031/2013.27708
    [36]
    郭映.应用Shuttleworth-Wallace双源模型对玉米蒸散的研究[D].兰州: 兰州大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10730-1015354997.htm

    GUO Y. Estimation of actual evapotranspiration of maize field using Shuttleworth-Wallace model[D]. Lanzhou: Lanzhou University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10730-1015354997.htm
    [37]
    贾红, 胡继超, 张佳宝, 等.应用Shuttleworth-Wallace模型对夏玉米农田蒸散的估计[J].灌溉排水学报, 2008, 27(4): 77-80. http://d.old.wanfangdata.com.cn/Periodical/ggps200804022

    JIA H, HU J C, ZHANG J B, et al. Estimation of evapotranspiration during the maize growing season using the Shuttleworth-Wallace model[J]. Journal of Irrigation and Drainage, 2008, 27(4): 77-80. http://d.old.wanfangdata.com.cn/Periodical/ggps200804022
    [38]
    FISHER J B, DEBIASE T A, QI Y, et al. Evapotranspiration models compared on a Sierra Nevada forest ecosystem[J]. Environmental Modelling & Software, 2005, 20(6): 783-796. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b8e68a2c77caef4e5deadde93d2b850f
    [39]
    BARTON I J. A parameterization of the evaporation from no saturated surfaces[J]. Journal of Applied Meteorology, 2010, 18(1): 43-47. http://agris.fao.org/agris-search/search.do?recordID=US19810590936
    [40]
    AMATYA D M, HARRISON C A. Grass and forest potential evapotranspiration comparison using five methods in the atlantic coastal plain[J]. Journal of Hydrologic Engineering, 2016, 21(5): 1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5bf97f6b8b8f65f2d40b5137d4fdd948
    [41]
    程根伟, 余新晓, 赵玉涛, 等.贡嘎山亚高山森林带蒸散特征模拟研究[J].北京林业大学学报, 2003, 25(1): 23-27. doi: 10.3321/j.issn:1000-1522.2003.01.006

    CHENG G W, YU X X, ZHAO Y T, et al. Evapotranspiration simulation of subalpine forest area in Gongga Mountain[J]. Journal of Beijing Forestry University, 2003, 25(1): 23-27. doi: 10.3321/j.issn:1000-1522.2003.01.006
    [42]
    李璐, 李俊, 同小娟, 等.不同冠层阻力公式在玉米田蒸散模拟中的应用[J].中国生态农业学报, 2015, 23(8): 1026-1034. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201508013

    LI L, LI J, TONG X J, et al. Application of different canopy resistance models in summer maize evapotranspiration simulation[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8): 1026-1034. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201508013
  • Related Articles

    [1]Qiao Dong, Liu Yong, Tian Shuyong, Zhang Feng, Feng Xuejin, Zhang Yanan, Li Xiaoli, He Shuhua. Effects of different soil water potentials on seedling growth rhythm and seedling quality of Populus tomentosa[J]. Journal of Beijing Forestry University, 2022, 44(4): 12-23. DOI: 10.12171/j.1000-1522.20200380
    [2]Wei Jiatong, Chen Siqi, Lu Xianbo, Zhang Feifan, Pan Zhenhai, Liu Yanru, Ge Lili, Zhao Xiyang. Evaluation and selection of excellent provenances of Pinus koraiensis based on growth and wood properties[J]. Journal of Beijing Forestry University, 2022, 44(3): 12-23. DOI: 10.12171/j.1000-1522.20210247
    [3]Li Yan, Zhu Jiayao, Wang Xihe, Sun Quan, Li Yulei, Wu Yunyang, Li Deyao, Li Pingyang, Yu Haiyang, Zhao Xiyang. Growth evaluation and selection study of elite clones and its offspring families in Pinus koraiensis[J]. Journal of Beijing Forestry University, 2021, 43(10): 38-46. DOI: 10.12171/j.1000-1522.20210080
    [4]Jiang Kaibin, Du Chengju, Li Sainan, Huang Shaowei, Liu Tianyi. Genetic evaluation on growth and branching traits of 4-year-old half-sib families of loblolly pine[J]. Journal of Beijing Forestry University, 2020, 42(9): 1-10. DOI: 10.12171/j.1000-1522.20190456
    [5]Ge Huishuo, Song Yuepeng, Su Xuehui, Zhang Deqiang, Zhang Xiaoyu. Optimal growth model of Populus simonii seedling combination based on Logistic and Gompertz models[J]. Journal of Beijing Forestry University, 2020, 42(5): 59-70. DOI: 10.12171/j.1000-1522.20190296
    [6]LIU Yu, XU Huan-wen, ZHANG Guang-bo, WANG You-ju, TENG Wen-hua, JIANG Jing. Multipoint growth trait test of half-sibling offspring and excellent family selection of Betula platyphylla[J]. Journal of Beijing Forestry University, 2017, 39(3): 7-15. DOI: 10.13332/j.1000-1522.20160154
    [7]GAO Qiong, WANG Wei-you, LIANG Dong, LI Yue.. Comparison of growth traits and photosynthetic physiology in Pinus tabuliformis from eight provenances of China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 87-93.
    [8]LIU Yu, XU Huan-wen, JIANG Jing, LIU Gui-feng.. Family selection of birch tetraploid half-sibling based on seed vigor and seedling growth traits.[J]. Journal of Beijing Forestry University, 2014, 36(2): 74-80.
    [9]WANG Li-bao, ZHANG Zhi-yi, KANG Xiang-yang, SONG Lian-jun, SHANG Fu-hua. Effects of planting density on the early growth traits of white poplar hybrid clones[J]. Journal of Beijing Forestry University, 2012, 34(5): 25-30.
    [10]LI Yan-xia, ZHANG Han-guo, DENG Ji-feng, ZHANG Lei. Correlations among wood density, wood physical mechanics index and growth trait, and selection of elite families for production of building products in Larix olgensis[J]. Journal of Beijing Forestry University, 2012, 34(5): 6-14.
  • Cited by

    Periodical cited type(6)

    1. 莫崇杏,董明亮,李荣生,余纽,郑显澄,杨锦昌. 米老排杂交子代苗期生长性状遗传变异及选择. 森林与环境学报. 2023(05): 555-560 .
    2. Shuchun Li,Jiaqi Li,Yanyan Pan,Xiange Hu,Xuesong Nan,Dan Liu,Yue Li. Variation analyses of controlled pollinated families and parental combining ability of Pinus koraiensis. Journal of Forestry Research. 2021(03): 1005-1011 .
    3. 潘艳艳,许贵友,董利虎,王成录,梁德洋,赵曦阳. 日本落叶松全同胞家系苗期生长性状遗传变异. 南京林业大学学报(自然科学版). 2019(02): 14-22 .
    4. 秦光华,宋玉民,乔玉玲,于振旭,彭琳. 旱柳苗高年生长与气象因子的灰色关联度. 东北林业大学学报. 2019(05): 42-45+51 .
    5. 李峰卿,陈焕伟,周志春,楚秀丽,徐肇友,肖纪军. 红豆树优树种子和幼苗性状的变异分析及优良家系的初选. 植物资源与环境学报. 2018(02): 57-65 .
    6. 张素芳,张磊,赵佳丽,张莉,张含国. 长白落叶松小RNA测序和其靶基因预测. 北京林业大学学报. 2016(12): 64-72 . 本站查看

    Other cited types(6)

Catalog

    Article views (3331) PDF downloads (134) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return