• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
SUN Hao, LIU Jin-hao, HUANG Qing-qing, ZHAO Ke. Research on the windproof efficiency of polygonal straw sand barrier[J]. Journal of Beijing Forestry University, 2017, 39(10): 90-94. DOI: 10.13332/j.1000-1522.20170173
Citation: SUN Hao, LIU Jin-hao, HUANG Qing-qing, ZHAO Ke. Research on the windproof efficiency of polygonal straw sand barrier[J]. Journal of Beijing Forestry University, 2017, 39(10): 90-94. DOI: 10.13332/j.1000-1522.20170173

Research on the windproof efficiency of polygonal straw sand barrier

More Information
  • Received Date: May 15, 2017
  • Revised Date: June 18, 2017
  • Published Date: September 30, 2017
  • To understand the windproof benefit of triangular sand barrier, square sand barrier and hexagonal sand barrier, we studied respectively the windproof efficiency, wind speed profile characteristics and roughness of ground surface of straw sand barrier, whose single mesh grid was 1 m2 by measuring the wind speeds in different heights in three straw sand barrier types. Results showed that wind speed efficiency could be reduced by triangular sand barrier and hexagonal sand barrier significantly than square sand barrier. The windproof efficiency of square sand barrier was 12% and 8% lower than triangular sand barrier and hexagonal sand barrier respectively at 0.2 m height, and was 11% and 10% lower than triangular sand barrier and hexagonal sand barrier respectively at 0.3 m height. The difference of windproof efficiency in triangular and hexagonal sand barrier was not obvious at he height between 0.2-0.3 m. The variation of roughness with wind speed was linear when the wind speed was less than 6 m/s. When wind speed was 4 m/s at 1 m height above bare sand, the roughness of bare sand was 0.166 cm, and the roughness of triangular sand barrier, square sand barrier and hexagonal sand barrier was 11.5, 9.3 and 10.4 cm, respectively, and was 69.3, 56 and 62.7 times of bare sand. The roughness of triangular sand barrier was 23.7% and 10.5% higher than that of square sand barrier and hexagonal sand barrier, respectively. Consequently, the roughness of triangular straw sand barrier is the highest.
  • [1]
    庞营军, 屈建军, 谢胜波, 等.高立式格状沙障防风效益[J].水土保持通报, 2014, 34(5):11-14. http://d.old.wanfangdata.com.cn/Periodical/stbctb201405003

    PANG Y J, QU J J, XIE S B, et al. Windproof efficiency of upright checkerboard sand-barriers[J]. Bulletin of Soil and Water Conservation, 2014, 34(5):11-14. http://d.old.wanfangdata.com.cn/Periodical/stbctb201405003
    [2]
    张登山, 吴汪洋, 田慧丽, 等.青海湖沙地麦草方格沙障的蚀积效应与规格选取[J].地理科学, 2014, 34(5):627-634. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201405016

    ZHANG D S, WU W Y, TIAN H L, et al.Effects of erosion and deposition and dimensions selection of straw-checkerboard barriers in the desert of Qinghai Lake[J]. Scientia Geographica Sinica, 2014, 34(5):627-634. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201405016
    [3]
    屈建军, 凌裕泉, 俎瑞平, 等.半隐蔽格状沙障的综合防护效益观测研究[J].中国沙漠, 2005, 25(3):329-335. doi: 10.3321/j.issn:1000-694X.2005.03.005

    QU J J, LING Y Q, ZU R P, et al.Study on comprehensive sand-protecting efficiency of semi-buried checkerboard sand-barriers[J]. Journal of Desert Research, 2005, 25(3):329-335. doi: 10.3321/j.issn:1000-694X.2005.03.005
    [4]
    黄强, 雷加强, 王雪芹.塔里木沙漠公路不同地貌部位的高立式沙障阻沙特征[J].干旱区地理, 2000, 23(3): 227-232. doi: 10.3321/j.issn:1000-6060.2000.03.006

    HUANG Q, LEI J Q, WANG X Q. Sand-obstructing effect of the high sand barriers in the different morhpologic sections along the Traim Desert Highway[J]. Arid Land Geography, 2000, 23(3): 227-232. doi: 10.3321/j.issn:1000-6060.2000.03.006
    [5]
    马学喜, 李生宇, 王海峰, 等.固沙网沙障积沙凹曲面特征及其固沙效益分析[J].干旱区研究, 2016, 33(4):898-903. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201604029

    MA X X, LI S Y, WANG H F, et al.Concave surface features in sand-fixing net barriers and evaluation of sand-fixing benefits[J]. Arid Zone Research, 2016, 33(4):898-903. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201604029
    [6]
    党晓宏, 高永, 虞毅, 等.新型生物可降解PLA沙障与传统草方格沙障防风效益[J].北京林业大学学报, 2015, 37(3):118-125. doi: 10.13332/j.1000-1522.20140245

    DANG X H, GAO Y, YU Y, et al. Windproof efficiency with new biodegradable PLA sand barrier and traditional straw sand barrier[J]. Journal of Beijing Forestry University, 2015, 37(3):118-125. doi: 10.13332/j.1000-1522.20140245
    [7]
    蒙仲举, 任晓萌, 高永.半隐蔽式沙柳沙障的防风阻沙效益[J].水土保持通报, 2014, 34(3):178-206. http://d.old.wanfangdata.com.cn/Periodical/stbctb201403034

    MENG Z J, REN X M, GAO Y. Effect of semi-buried Salix psammophila checkerboad on wind-preventing and sand-resisting[J]. Bulletin of Soil and Water Conservation, 2014, 34(3):178-206. http://d.old.wanfangdata.com.cn/Periodical/stbctb201403034
    [8]
    刘虎俊, 王继和, 李毅, 等.塑料网方格沙障对新月形沙丘迎风坡的风沙流影响[J].水土保持学报, 2011, 25(5):26-34. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201105006

    LIU H J, WANG J H, LI Y, et al. Effects of plastic checkerboard sand-barrier on wind-sand flux of leeward of crescentic dune[J]. Journal of Soil and Water Conservation, 2011, 25(5):26-34. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201105006
    [9]
    张克存, 俎瑞平, 方海燕.不同孔隙度尼龙网对风沙流减弱作用的风洞模拟[J].水土保持学报, 2004, 18(4):5-11. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb200404002

    ZHANG K C, ZU R P, FANG H Y. Simulation on abated effect of nylon net with different porosities on wind-blown sand in wind tunnel[J]. Journal of Soil and Water Conservation, 2004, 18(4):5-11. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb200404002
    [10]
    屈建军, 刘万贤, 雷家强, 等.尼龙网栅栏防沙效应的风洞模拟实验[J].中国沙漠, 2001, 21(3):62-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm200103013

    QU J J, LIU W X, LEI J Q, et al. Simulation experiments on sand-arresting effect of nylon net fence in wind tunnel[J]. Journal of Desert Research, 2001, 21(3):62-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm200103013
    [11]
    张克存, 屈建军, 牛清河, 等.青藏铁路沿线砾石方格固沙机理风洞模拟研究[J].地球科学进展, 2010, 25(3):284-289. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201003006

    ZHANG K C, QU J J, NIU Q H, et al. Simulative research on the mechanism of rocky checker board sand barriers along Qinghai-Tibet rail way in wind tunnel[J]. Advances in Earth Science, 2010, 25 (3):284-289. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201003006
    [12]
    BO T L, MA P, ZHENG X J. Numerical study on the effect of semi-buried straw checkerboard sand barriers belt on the wind speed[J]. Aeolian Research, 2015, 16:101-107. doi: 10.1016/j.aeolia.2014.10.002
    [13]
    周娜, 张春来, 田金鹭, 等.半隐蔽式草方格沙障凹曲面形成的流场解析及沉积表征[J].地理研究, 2014, 33(11):2145-2156. http://d.old.wanfangdata.com.cn/Periodical/dlyj201411014

    ZHOU N, ZHANG C L, TIAN J L, et al. Flow field controlling the concave surface of the semi-buried checkerboards and its characterization by grain sizes of sediments[J]. Geographical Research, 2014, 33(11):2145-2156. http://d.old.wanfangdata.com.cn/Periodical/dlyj201411014
    [14]
    李锦荣, 孙保平, 高永, 等.基于空气动力学的沙袋沙障气流场模拟[J].北京理工大学学报, 2010, 30(6):749-752. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201006027

    LI J R, SUN B P, GAO Y, et al. Simulation of sand-bag barrier wind flow field based on aero dynamics[J]. Transactions of Beijing Institute of Technology, 2010, 30(6):749-752. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201006027
    [15]
    CORNELIS W M, GABRIELS D. Optimal windbreak design for wind-erosion control[J]. Journal of Arid Environments, 2005, 61(2):315-332. doi: 10.1016/j.jaridenv.2004.10.005
    [16]
    SALEH A, FRYREAR D W. Soil roughness for the revised wind erosion equation[J]. Journal of Soil and Water Conservation, 1999, 54(2):473-476.
    [17]
    鞠英芹, 刘寿东, 马德粟, 等.农田与草地下垫面空气动力学粗糙度的研究[J].科技通报, 2016, 32(8):5-16. doi: 10.3969/j.issn.1001-7119.2016.08.002

    JU Y Q, LIU S D, MA D S, et al. Study on aerodynamic roughness length on crop and grass underlying surfaces[J]. Bulletin of Science and Technology, 2016, 32(8):5-16. doi: 10.3969/j.issn.1001-7119.2016.08.002
    [18]
    CHEN K, ZHU F R, NIU Z N, et al. Evaluation on shelter effect of porous windbreak fence through wind tunnel test[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(5):636-640. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb200605013
    [19]
    DONG Z B, LUO W Y, QIAN G Q, et al. A wind tunnel simulation of the mean velocity fields behind upright porous fences[J]. Agricultural and Forest Meteorology, 2007, 146(1):82-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=508be126cf115e08e0c8508898508892
    [20]
    DONG Z B, LUO W Y, QIAN G Q, et al. Evaluating the optimal porosity of fences for reducing wind erosion[J]. Sciences in Cold Arid Regions, 2011, 3(1):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hhqkx-e201101001
    [21]
    ZHANG C L, LI Q, ZHOU N, et al. Field observations of wind profiles and sand fluxes above the windward slope of a sand dune before and after the establishment of semi-buried straw checkerboard barriers[J]. Aeolian Research, 2016, 20:59-70. doi: 10.1016/j.aeolia.2015.11.003
  • Related Articles

    [1]Yu Yongchao, Kang Feng, Zheng Yongjun, Lü Haotun, Wang Yaxiong. Design and simulation of the automatic-leveling high-position platform in orchards[J]. Journal of Beijing Forestry University, 2021, 43(2): 150-159. DOI: 10.12171/j.1000-1522.20200398
    [2]Zhu Li, Ma Jingyao, Meng Zhaoxin, Shi Jinsong, Xing Xin, Jiang Zhongjin. Compensation control of woodworking feeding platform based on self-adaptive genetic optimization recurrent neural network[J]. Journal of Beijing Forestry University, 2020, 42(12): 125-134. DOI: 10.12171/j.1000-1522.20200248
    [3]Meng Zhaoxin, Cao Jiajia, Zhu Li, Ma Jingyao, Shi Jinsong. Kinetics analysis and strategy of compensation control study for feeding platform of curve saw for wood[J]. Journal of Beijing Forestry University, 2020, 42(2): 159-166. DOI: 10.12171/j.1000-1522.20190234
    [4]MENG Zhao-xin, XIAO Ding-fu, YIN Hang, LI Shang, ZHANG Cong.. Mechanism error compensation method of parallel curve feeding platform.[J]. Journal of Beijing Forestry University, 2016, 38(9): 95-101. DOI: 10.13332/j.1000-1522.20160026
    [5]HUANG He-shan, LI Ting, LIU Jin-hao. Dynamic modeling and simulation analysis of 6-HUS parallel moving platform[J]. Journal of Beijing Forestry University, 2015, 37(4): 143-150. DOI: DOI:10.13332/j.1000-1522.20140349
    [6]YU Yang, YU Guo-sheng, DE Xue-hong, YUAN Da-long, CHEN Zhong-jia. Trajectory simulation of the internal cylinder meshing forming device based on ADAMS method[J]. Journal of Beijing Forestry University, 2014, 36(4): 147-151. DOI: 10.13332/j.cnki.jbfu.2014.04.003
    [7]DUAN Xu-liang, FENG Xiu-lan, ZHAO Lei, ZHANG Zhi-xiang, LIN Shan-zhi. Design and development of information sharing platform on forest and flower germplasm resources[J]. Journal of Beijing Forestry University, 2007, 29(5): 147-152. DOI: 10.13332/j.1000-1522.2007.05.027
    [8]GAO Kai, LI Wen-bin, KAN Jiang-ming. An automatic measuring method for the trunk curvature of standing tree based on computer vision[J]. Journal of Beijing Forestry University, 2007, 29(4): 10-14. DOI: 10.13332/j.1000-1522.2007.04.003
    [9]LIU Peng-ju, ZHOU Yu-fei, TANG Xiao-ming. Intelligent data input software of forest resources on PDA[J]. Journal of Beijing Forestry University, 2007, 29(2): 105-110.
    [10]DU Hua-qiang, FAN Wen-yi, ZHAO Xian-wen, WANG Xue. Fractal and geo-statistic analysis software system for remote sensing data based on Matlab[J]. Journal of Beijing Forestry University, 2005, 27(5): 92-97.
  • Cited by

    Periodical cited type(2)

    1. 詹茹心,李慧,马洪娜. 缺磷胁迫对益母草幼苗叶片的影响. 耕作与栽培. 2024(05): 18-24 .
    2. 姚诗雨,王杰,黄文娟,彭承志,宋双飞. 不同展叶物候期胡杨离子分布、吸收和运输特征及其与土壤盐分关系. 西北植物学报. 2023(12): 2118-2129 .

    Other cited types(1)

Catalog

    Article views (2347) PDF downloads (36) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return